

VH3 series vector VFD

(PA parameter auto-study) Fast manual

Wuxi XINJE Electric Co., Ltd.

Data No.: INV C 12 20170328 204

This manual contained basic notes of body safety and product connection. These notes are listed with triangle mark, others please comply with basic electrical operation rules.

Installation notes

please abide by the points for attention, if not, the control system may work abnormal and cause property damaging.

Correct using

This equipment only can be used to the applications listed in this manual, and connected the devices recommended by XINJE.

The product can work fine by correct transmission, maintainance, configuration and installation, and please operate as the manual notes.

WUXI XINJE ELECTRIC CO., LTD. Copy Rights

Without the explicit written permission, it is not allowed to copy, transfer or use the contents in this manual, and the violator shall be liable for the related loss.

Responsibility statement

We have checked the contents of this manual to match the hardware and software descriptions, as the mistakes are inevitable, we cannot ensure the complete consistency. The manual is subject to change without prior notice.

Catalog

SAFETY PRECAUTIONS	4
1 PRODUCT INTRODUCTION	10
1-1. SUMMARIZATION	10
1-2. Specification	13
1-3. Part description	17
1-4. DIMENSION	18
2 INSTALLATION AND WIRING	19
2-1. INSTALLATION ENVIRONMENT	19
2-1-1. Environment requirments	19
2-1-2. Installation direction and space	19
2-1-3. installation and remove of operate panel	20
2-2. WIRING NOTES	20
2-3. MAIN CIRCUIT WIRING	21
2-3-1. Wiring diagram	21
2-3-2. Terminal arrangement	22
2-4. Control circuit wiring	25
2-4-1. Control board and jumper	25
2-4-2. Analog I/O wiring	27
2-4-3. Communication terminal wiring	29
2-5. INSTALLATION INSTRUCTIONS ACCORDING WITH EMC	31
2-5-1. Noise suppression	31
2-5-2. Local wiring and grounding	32
3 VFD RUNNING AND OPERATION	34
3-1. VFD RUNNING	34
3-1-1. Command channel of VFD running	34
3-1-2. VFD frequency setting channel	34
3-1-3. VFD working state	35
3-1-4. VFD running mode	35

3-2. Keyboard	
3-2-1. Keyboard layout	
3-2-2. Keyboard function	
3-2-3. LED and indicator	
3-2-4. Operation method of the panel	
3-3. VFD POWER ON	
3-3-1. checking after power on	
3-3-2. First time power on	
4 FUNCTION PARAMETER	
4-1. FUNCTION CODE	
5 FAULT DIAGNOSIS AND SOLUTION	
5-1. FAULT AND SOLUTION	
5-2. CHECK THE FAULT RECORDS	
5-3. FAULT RESET	
6 MAINTENANCE	
6-1. MAINTENANCE	
6-1-1. Routine maintenance	
6-2. PERIODICAL CARE AND MAINTENANCE	
6-2-1.Periodical care	
6-2-2. Periodical maintenance	
6-3. WARRANTY OF THE INVERTER	
7 COMMUNICATION PROTOCOL	
7-1. OVERVIEW OF COMMUNICATION PROTOCOL	
7-2. COMMUNICATION PROTOCOL	
7-2-1. Communication networking mode	
7-2-2. Communication protocol modes	
7-2-3. Communication port	
7-3 MODRUS-RTU COMMUNICATION PROTOCOL	93

7-3-1. Character structure	
7-3-2. Communication structure	
APPENDIX A ACCESSORIES	
APPENDIX A-1. BRAKE RESISTOR	

Safety Precautions

Upon unpacking, please confirm that: Check whether the model and the rated values on the nameplate of the inverter are in accordance with your order. Check if there is any damage occurred during transportation; pleases contact us or the distributor if you find any missing or damage of the products.

In order to use this product correctly, the user who uses the product for the first time must read this manual carefully and pay close attention to the safety precautions.

Please keep this manual properly, hand it to the terminal user and lay it on the place where the operators can read it easily.

Safty Precautions O

Confirmations Upon Delivery

• Installation

- 1. Always hold the bottom of the inverter when carrying it. If the inverter is held by the front cover, the main body of the inverter may fall, possible resulting in injury.
- 2. Attach the inverter to metal or other noncombustible materials. Fire can result if the inverter is attached to a combustible material.
- 3. Install a cooling fan or other cooling device when installing more than one inverter in the same enclosure so that the temperature of the air entering the inverters is below 45°C. Overheating can result in fires or other accidents.

- 1. Always turn off the input power supply before wiring. Otherwise, an electric shock or fire may occur.
- 2. Wiring must be operated by an authorized person qualified in electrical work. Otherwise, an electric shock or fire may occur.
- 3. Make sure to ground the ground terminals. Otherwise, an electric shock or fire may occur.
- 4. Always check the operation of any emergency stop circuits after they are wired. Otherwise, possibly result in injury (user responsibility for the wiring).
- 5. Never touch the output terminal directly by your hands or let the output terminals to come into contact with the inverter case. Never short the output terminals. Otherwise, an electric short or ground short may occur.
- 6. Never touch the internal circuit or the zero-component until power off and the charge indicator is off as there may still be high voltage inside the AC motor dirver.

- 1. Confirm that the voltage of the main AC power supply satisfies the rated voltage of the Inverter. Injury and fire may occur if the voltage is not right.
- 2. Do not perform voltage withstand tests on the Inverter. Otherwise, semiconductor elements and other devices can be damaged.
- 3. Connect braking resistors, Braking Resistor Units, and Braking Units as shown in the I/O wiring examples. Otherwise, a fire may occur.
- 4. Tighten all terminal screws to the specified tightening torque. Otherwise, a fire may occur.
- Do not connect AC power to output terminals U, V, and W. The interior parts of the Inverter will be damaged if voltage is applied to the output terminals.
- 6. Do not connect phase-advancing capacitors or LC/RC noise filters to the

output circuits. The Inverter may be damaged or internal parts burnt if these devices are connected.

- 7. Do not connect electromagnetism switch, electromagnetism contactor to output circuit. When the inverter is running with load, the electromagnetism switch and electromagnetism contactor will generate inrush current which will cause inverter's over current protection.
- 8. Do not disassemble the whole front cover as disassembling the top front while wiring is ok. Otherwise, inverter internal parts may be damaged.

• Maintenance and Inspection

Danger 🖌

- 1. Do not touch the inverter terminals, as they may carry high voltage. Otherwise, an electric short may occur.
- 2. Make sure to have protective cover .Always have the protective cover in place when power is being supplied to the Inverter. When attaching the cover, please with the power turns off.

Otherwise, an electric short may occur.

3. Maintenance, inspection, must be performed only by authorized personnel. Otherwise, an electric short may occur.

- A CMOS IC is used in the control board. Handle the control board and CMOS IC carefully. The CMOS IC can be destroyed by static electricity if touched directly.
- 2. Do not change the wiring, or remove connectors or the Digital Operator, during operation.

Otherwise, The devices may be damaged.

O Usage Precautions O

> Constant torque low speed running

When the inverter outputs to a common motor at low speed for a long term, the output rated torque should be derated due to the worsening radiating effect. If low speed constant torque long term running is required, then a special variable frequency motor is needed.

> Motor insulation

When using the V5/F5 series inverter, make sure to confirm the insulation of the motor which will be used to avoid device damage. Besides, do the periodic check for the insulation condition of the motor located in the bad environment to guarantee the system can operate safely.

> Negative torque load

If in the case of improving load, negative torque may occur. Braking units should be connected with the inverter, or over current and over voltage fault may happen.

> Mechanical resonance point of load

The inverter may encounter the mechanical resonance point of load within certain output frequency range. Jump frequencies have to be set to avoid it.

> Capacitor and resistor

Because the inverter output pulse wave, capacitor and resistors shouldn't be connected with the output terminals of the inverter, or the inverter may trip or components may be damaged; Besides, don't connect switch components such as air switch and contactor with the output terminals is recommended, as shown in Fig.1-1(If switch components need to be connected with the output terminals, make sure output current of the inverter is zero when switch is acting).

Fig.1-1 Capacitor is prohibited to be connected with output terminals of inverter

> Derate according to basic frequency setting

When the basic frequency is lower than the reference frequency, please consider duration for the motor so as to avoid motor's damage caused by overheating.

> Running at frequency above 50Hz

If running at frequency above 50Hz, besides the increment of vibration and noise, the ranges of running speed of motor shaft and mechanical device have to be guaranteed. Be sure to make an enquiry first.

> The electro-thermal protective value of motor

If the applicable motor is selected as per requirements, the inverter can perform the thermal protection to the motor. If the ratings of applied motor are not in compliance with the inverter, be sure to adjust the protective value or adopt other protective measures to guarantee the safe running of motor.

Altitude and derate

When the altitude is higher than 1000m, the cooling effect of inverter is deteriorated because of the rareness of air, deration must be considered, shown in Fig.1-2 which indicates the relationship between the altitude and rated current of 8

frequency inverter.

About protection classes

The protection class of VH3 series inverter IP20 is reached in the case of status display unit or keyboard.

◎ Note For Scrap ◎

When you scrap the inverter, please pay attention to:

Explosion risk of capacitor: The capacitors in the main circuits may explode when they are burned.

Waste gas when plastic parts are burned: Poisonous gas may be generated when front panel is burned.

Dispose method: Please dispose as industrial rubbish.

1 Product introduction

1-1. Summarization

VH3 series inverter is produced by Xinje with high performance, easy operating and low noise. It is a innovative product with a series advanced and practical running and control functions such as practical PI, flexible input and output terminals, parameter modification online, fixed length control, traverse operation, RS485 control, fieldbus control. It provides OEM customers with high integrated, reliable, cost-effective solution.

Naming rules

	VH3	series	include	vairous	type of	of models.	The mode	l and	function	table
--	-----	--------	---------	---------	---------	------------	----------	-------	----------	-------

Туре	X-NET fieldbus	RS 485	Multi- speed	X6 high speed pulse input	DO relay output	DO high speed pulse output	Analog current input	Analog current voltage output	Error relay output
VH3-	×								
40P7		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VH3-	×								
41P5		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VH3-	×				\checkmark				

42P2									
VH3-	×								
43P7		\checkmark							
VH3-	×								
45P5		\checkmark							
VH3-	×								
47P5		\checkmark							
VH3-	×								
4011		\checkmark							
VH	×								
3-401									
5		\checkmark							
VH3									
E-40									
P7	\checkmark	×	\checkmark						
VH3									
E-41									
P5	\checkmark	×	\checkmark						
VH3									
E-42									
P2	\checkmark	×	\checkmark						
VH3									
E-43									
P7	\checkmark	×	\checkmark						
VH3									
E-45									
P5	\checkmark	×	\checkmark						
VH3									
E-47									
P5	\checkmark	×	\checkmark						
VH3									
E-40	\checkmark	×	\checkmark						

11									
VH3									
E-40									
15	\checkmark	×	\checkmark						
			1						

Notes: \times not support $\sqrt{}$ support

VH3/VH3E models:

Voltage level	Model	Input power supply capacity (KVA)	Input current (A)	Output current (A)	Suitable motor (KW)
	VH3-40P7	1.5	3.4	2.1	0.75
	VH3-41P5	3.0	5.0	3.8	1.5
	VH3-42P2	4.0	5.8	5.1	2.2
	VH3-43P7	5.9	10.5	9.0	3.7
	VH3-45P5	8.9	14.6	13.0	5.5
	VH3-47P5	11.0	20.5	17.0	7.5
T 1	VH3-4011	17.0	26.0	25.0	11.0
Inree	VH3-4015	21.0	35.0	32.0	15.0
280V	VH3E-40P7	1.5	3.4	2.1	0.75
300 V	VH3E-41P5	3.0	5.0	3.8	1.5
	VH3E-42P2	2.2	5.8	5.1	2.2
	VH3E-43P7	5.9	10.5	9.0	3.7
	VH3E-45P5	8.9	14.6	13.0	5.5
	VH3E-47P5	11.0	20.5	17.0	7.5
	VH3E-4011	17.0	26.0	25.0	11.0
	VH3E-4015	21.0	35.0	32.0	15.0

1-2. Specification

Technical sepcification

V	/H3-4	0P7	1P5	2P2	3P7	
	Matched motor (KW)	0.75	1.5	2.2	3.7	
Output	Rated current (A)	2.1	3.8	5.1	9.0	
	Rated voltage (V)		AC	380		
	Frequency range (Hz)		0~5	500		
	Frequency resolution		0.0	01		
	(Hz)					
	Rated Three phase 380V; 50Hz/60Hz					
Input	voltage/frequency					
	Voltage permissible	Voltage: -15	% ~ +15% ve	oltage unblance	d rate: <3%	
	fluctuation					
	Permissible frequency	Frequency: ±5%				
	fluctuation					

7	/H3-4	5P5	7P5	011	015	
	Matched motor (KW)	5.5	7.5	11.0	15.0	
	Rated current (A)	13.0	17.0	25.0	32.0	
Output	Rated voltage (V)		AC	380		
	Frequency range (Hz)		0~5	00		
	Frequency resolution		0.0)1		
	(Hz)					
	Rated]	Three phase 380)V; 50Hz/60Hz		
Input	voltage/frequency					
	Voltage permissible	Voltage: -15	% ~ +15% vo	ltage unblance	d rate: <3%	
	fluctuation					
	Permissible frequency	Frequency: ±5%				
	fluctuation					

Common specification

Environment	Application	In-door, free from direct sunlight, dust, corrosive gas, oil
	environment	mist, steam, water drop etc
	Altitude	Lower than 1000m (The inverter should be derated
		when the elevation is higher than 1000m)
	Ambient	-10°C ~ +40°C
	Temperature	
	Humidity	Less than 90% RH, No condensation
	Vibration	Less than 5.9 m/s ² (0.6M)
	Storage	-20°C ~ +60°C
	Temperature	
Structure	Protect	IP20 (In the state of state display units or keyboard)
	Configuration	
	Cooling	Fan cooling
	Manner	
Installation		Wall mounted or install inside cabinet

General specification

	M	Vector control: 0~500Hz
	Max frequency	V/F control: 0~500Hz
	Comion froqueness	0.5KHz~16KHz
	Carrier frequency	Auto-adjust the carrier frequency as the load features
Bas	Frequency	Digital setting: 0.01Hz
sic fu	resolution	Analog setting: max frequency $\times 0.025\%$
ıncti	incti a h	Open loop vector control (SVC)
ons	Control mode	V/F control
	Stortur torque	G type: 0.5HZ/150% (SVC)
	Startup torque	P type: 0.5HZ/100%
Stable speed		±0.5% (SVC)
	precision	

	Overload ability	G type: 150% rated current 60s; 180% rated current 3s	
	o verioud ability	P type: 120% rated current 60s; 150% rated current 3s	
	Torque boost	Auto torque boost; manual torque boost 0.1%~30.0%	
		line type, multi-point type, N power type, V/F curve	
	v/F curve	(1.2 nd power, 1.4 th power, 1.6 th power, 1.8 th power, 2 nd power)	
	V/F separation	Two ways: complete-separation, half-separation	
	Acceleration	Line or S curve mode.	
	deceleration curve	Four acceleration/deceleration time, range is 0.0~6500.0s	
		DC brake frequency: 0.00HZ ~ max frequency	
	DC brake	Brake time: 0.0s~36.0s	
		Brake action current: 0.0%~100.0%	
	I l	Jog frequency: 0.00Hz~50.00Hz。	
	Jog control	Jog acceleration/deceleration time 0.0s~6500.0s	
	Simple PLC,	Built-in PLC or control terminal can make max 16 different	
	multi-speed	kinds of speed running	
	running		
	Built-in PID	Easy to make process control close loop control system	
	Auto-voltage	When the power system voltage changed, make the output	
	regulation (AVR)	voltage stable	
	Overvoltage	Auto-limit the voltage and current when running, prevent from	
	overcurrent speed	tripping caused by frequently overvoltage overcurrent	
	loss control		
	Fast current limit	Minimize the overcurrent fault, protect the VFD	
	function		
	Tongue limit and	Excavator feature, auto-limit the torque when running, prevent	
		from tripping caused by frequently overcurrent; close loop vector	
	control	control mode can make torque control	
dS	Outstanding	Control the asynchronous motor through current vector control	
ecia	performance	technology	
l fun	Not stop running	It will compensate the voltage loss by the load energy feedback	
ıctio	for momentary	when instantaneous power failure to make the VFD running for	
ns	power failure	short time	

	Fast current limit	Avoid frequently overcurrent fault of frequency inverter		
	Timing control	Set the time range: 0.0Min ~ 6500.0Min		
	Multi-motor	Two groups of motor parameters can switch two different		
	switching	motors		
	Multithreading	Two kinds of fieldbus: Modbus, X-NET		
	bus control			
		Set through operate panel, terminals, serial port		
	Command source	Multi-mode can be switched		
	Energy on all sources	Set through digital, analog current, analog voltage, pulse, serial		
	Frequency source	port. The modes can be switched		
	Auxiliary	10 kinds of auxiliary frequency source. It can make auxiliary		
Ru	frequency source	frequency fine-tuning and frequency synthesis		
nnin		2 terminals of digital input, one of them support max 100KHz		
ıg fu		high speed pulse input		
ncti	Input terminal	2 terminals of analog input, one of them only support 0~10V		
ons		voltage input		
		1 terminal of 0~10V voltage input		
		1 terminal of high speed pulse output (open collector optional),		
	Output terminal	support 0~100KHz square wave output		
		1 terminal of digital output		
		1 terminal of relay output		
		1 terminal of analog output, support 0~20mA or 0~10V		
	Dun	Protection for overcurrent, overvoltage, overheat, overload,		
	Kull	undervoltage		
	Accessories	Brake components, VH3 base, extension cable of operate panel		

1-3. Part description

1-4. Dimension

■ VH3 series three phase 2.2~3.7KW

Unit: mm

2 Installation and wiring

2-1. Installation environment

2-1-1. Environment requirments

- Ambient tempeature: -10°C~40°C. The inverter should be derated when the temperature over 40°C, at the same time ventilation and heat dissipation should be enhanced.
- Far away from the location with direct sunlight, dust, floating fiber or metal powder.
- Mount in the location free of corrosive gas and combustible gas.
- Mount in the location free of condensation, and the humidity should less then 95%RH.
- Mount in the location where vibration less than $5.9 \text{m/s}^2(0.6 \text{G})$
- ➢ Far away from electramagnetism interfere source and other electric instruments sensitive with electramagnetism interfere.

2-1-2. Installation direction and space

- > Mount the inverter vertically under general condition.
- > The mounting space and distance are shown in Fig. 2-1.
- ➢ When several inverters are mounted up and down, air diversion plate should be fixed in the middle as shown in Fig. 2-2.

Fig 2-1. Installation space

Fig 2-2. Installation of multi-inverter

2-1-3. installation and remove of operate panel

- Removing: Remove the four screws on the cover with phillips screwdriver.
- Mounting: Allign the mounting holes and then fix the screws.

2-2. Wiring notes

- Wiring after power off for at least 10 minutes, otherwise, an electronic short may occur.
- Do not connect AC power to output terminals U, V and W.
- Both the inverter and the motor should be safety grounded as there is leakage current inside the inverter. The diameter of grounding copper cable must be more than 3.5mm², grounding resistor must be less than 10ohm.
- Withstand voltage test of the inverter has been done in the factory, users would better not do it again.
- Do not install electromagnetic contactor, absorption capacitor or other resistance-capacitance absorption devices, as shown in Fig2-3.
- In order to make the input over-current protection and power off maintenance easily, the inverters should connect power supply via braker.
- The connection cable of relay I/O circuit (X1~X4, X6, FWD, REV, OC, DO) should select the twisted-pair or shield cable with diameter over 0.75 mm². One terminal of the shield layer should be hung in the air and the other

terminal should be connected with the inverter's grounding terminal PE, the cable length should be less than 50m.

- Before layout operation, make sure the power supply of inverter is cut off, all the LED on the operate panel is black out and delay for more than 10 minutes.
- Wiring work can be performed after the voltage between internal electrolesis capacity "+" and "-" is below DC36V.
- Wiring work can only be done by trained and professional personnel.
- Before power on, please check if the power supply voltage is consistent with the inverter voltage level, otherwise device damage, human injuries and deaths may occur.

2-3. Main circuit wiring

2-3-1. Wiring diagram

The brake resistor wiring is different for models, the main circuit wiring diagram is shown as below:

Fig 2-3. Main circuit simple wiring diagram

2-3-2. Terminal arrangement

TA TB TC X1 X3 X2 X4	○ 24V DO ○ AO 10V ○ 485+ X6 COM ○ VI1 VI2 GND PE 485- WER MOTOR		
P+ PB R	S T PE U V W		
Terminals	Function		
R, S, T	Power suply three phase 380V		
U, V, W	motor cable UVW (pay attention to the motor wiring method)		
PE	Ground		
P+, PB	Connect to brake resistor		
TA , TB, TC	Fault relay		
X1, X2, X3, X4, X6, COM	X1, X2, X3, X4: multi-function terminal, X6: high speed pulse input		
24V, COM	For relay, power supply of limit switch		
DO, COM	Relay output or high speed pulse output		
AO, GND	Analog voltage or current output		
VI1, GND	Analog voltage or current input		
VI2, GND	Analog voltage or current input		
485+, 485-	RS485 interface		

VH3-40P7/ VH3-41P5 terminal arrangement

VH3-42P2/ VH3-43P7 terminal arrangement

Terminals	Function
R, S, T	Power suply three phase 380V

	motor cable UVW (pay attention to the motor wiring	
U, V, W	method)	
PE	Ground	
P+, PB	Connect to brake resistor	
TA , TB, TC	Fault relay	
VI VI VI VI VI COM	X1, X2, X3, X4: multi-function terminal,	
A1, A2, A5, A4, A0, COM	X6: high speed pulse input	
24V, COM	For relay, power supply of limit switch	
DO, COM	Relay output or high speed pulse output	
AO, GND	Analog voltage or current output	
VI1, GND	Analog voltage or current input	
VI2, GND	Analog voltage or current input	
485+, 485-	RS485 interface	

VH3-45P5/ VH3-47P5 terminal arrangement

Terminal	Function	
R, S, T	Power suply three phase 380V	
	motor cable UVW (pay attention to the motor wiring	
U, V, W	method)	
PE	Ground	
P+, PB	Connect to brake resistor	
TA , TB, TC	Fault relay	
X1, X2, X3, X4, X6, COM	X1, X2, X3, X4: multi-function terminal,	

	X6: high speed pulse input
24V, COM	For relay, power supply of limit switch
DO, COM	Relay output or high speed pulse output
AO, GND	Analog voltage or current output
VI1, GND	Analog voltage or current input
VI2, GND	Analog voltage or current input
485A, 485B, 485-GND	485A is differential signal +, 485B is differential signal-
ACOM, BCOM	

VH3-4011/ VH3-4015 terminal arrangement

Terminal	Function	
R, S, T	Power suply three phase 380V	
	motor cable UVW (pay attention to the motor wiring	
U, V, W	method)	
PE	Ground	
P+, PB	Connect to brake resistor	
TA , TB, TC	Fault relay	
V1 V2 V2 V4 V6 COM	X1, X2, X3, X4: multi-function terminal,	
Λ 1, Λ 2, Λ 5, Λ 4, Λ 0, COM	X6: high speed pulse input	
24V, COM	For relay, power supply of limit switch	
DO, COM	Relay output or high speed pulse output	
AO, GND	Analog voltage or current output	
VI1, GND	Analog voltage or current input	
VI2, GND Analog voltage or current input		

485+, 485-	RS485 interface

2-4. Control circuit wiring2-4-1. Control board and jumper

VH3-40P7/ VH3-41P5 series three phase VFD jumper

VH3-42P2/VH3-43P7 series three phase VFD jumper

VH3-45P5/ VH3-47P5 series three phase VFD jumper

VH3-4011/VH3-4015 series three phase VFD jumper

The jumper position on the control board is shown as above diagram, please set the jumper and wiring the terminal before using the VFD. The wire above 1mm² is recommended for terminal wiring. J1 is the interface between operate panel and CPU board. J2 is the interface between operate panel and CPU board RJ45 port, the RJ-45 cable should not be larger than 3 meters.

T	Function	Setting	Default
Jumper			setting
JP1	CI current/voltage input options	1—2 V side: 0~10V voltage signal 2—3 I side: 4~20mA current signal	4~20mA(not support for now)
JP2	Analog output terminal AO	$1-2: 0\sim10V$, AO terminal voltage output $2-3: 4\sim20$ mA, AO terminal current output	0~10V

Table 2-2 jumper function

2-4-2. Analog I/O wiring

VI terminal received the analog signal, jumper setting is voltage input $0\sim10V$ and current input $4\sim20$ mA(not support for now). The wiring diagram is shown as

fig2-6.

Fig 2-6 VI terminal wiring

Analog output terminal AO wiring

Analog output terminal AO can display various physical quantities. The output voltage is 0~10V, output current is 4~20mA.

Fig. 2-7 Analog output wiring

Note:

- (1) When using analog input, please install filter capacitor or common mode inductance between VI and GND.
- (2) Because analog input signal is easily interfered by outside, the shield cable is required, the cable length must be short and the shield layer must be grounded well.
- (3) The resistor connecting between control terminal 10V and GND is 5~10K.

2-4-3. Communication terminal wiring

The communication port of this inverter is standard RS485 port.

With the following wiring methods, it can build up control system of one-master-one-slave or one-master-multi-slaves. Also, the superior device (PC or PLC) can make the functions such as real time monitoring, remote control, highly automated motion control.

> The connection between VFD RS485 inteface and upper device

Fig 2-8 RS485-(RS485/232)-RS232 communication wiring

Many inverters can be connected together through RS485, the PLC(or PC) is the master device, as shown in Fig.2-9; Also, you can select one inveter as master and the other inverters are slaves, as shown in Fig.2-10.The more inverters are connected, the communication system will be interfered seriously, the following wiring is recommended.

Fig. 2-9 Connection of PLC and inverters

(Inverters and motors are all grounded well)

Fig. 2-10 Connection of several inverters

(Inverters and motors are all grounded well)

If the communication is still failed with the above connection methods, you can adopt the following methods:

(1) Use separate power supply for PLC or isolate its power supply.

(2) Use magnetism ring for the cable and reduce the inverter's carrier frequency.

2-5. Installation instructions according with EMC

As the inverter output wave is PWM, electromagnetic noise will generate while it is working. To reduce the inverter interference for other devices, this chapter introduces the EMC mounting method in the following aspects: control the noise, local wiring, grounding, leak current, power supply filter.

2-5-1. Noise suppression

1. Noise type

The noise made by inverter may affect the neaby equipments and the effection is related to inveter's control system, antinoise and anti-jamming ability of the devices, wiring environment, safety distance, grounding method and other factors. The noise contains the following types: electrostatic induction, circuit transmit, space transmit, electro magnetic induction and so on.

2. The way to suppress the noise

Table 2-5	solutions	for	noise
-----------	-----------	-----	-------

Noise	
transferring	Solutions
path	

2	When the ground cable of external equipment forms a loop with the inverter,
	the equipment may operate incorrectly caused by leakage current of inverter
	grounding cable. The problem can be solved if the equipment is not grounded.
3	If the external equipment shares the same AC supply with the inverter, the
	inverter's noise may be transmitted along its input power supply cables, which
	may cause interference to other external equipments. Take the following
	actions to solve this problem: Install noise filter at the input side of the inverter,
	and use an isolation transformer or power filter to prevent the noise from
	disturbing the external equipment.
456	(1)The equipment and the signal cables should be far away from the inverter.
	The signal cables should be shielded and the shielding layer should be
	grounded. The signal cables should be located far away from the input/output
	cables of the inverter. If the signal cables must cross over the power cables,
	they should be placed at right angle to one another.
	(2) Install high-frequency noise filter (ferrite common-mode choke) at the input
	and output of the inverter to prevent the RF interfere of power lines.
	(3) Motor cables should be placed in a tube thicker than 2mm or buried in a
	cement slot. Power cables should be placed inside a metal tube and be
	grounded by shielding layer (Motor cable should use 4-core cable, one of the
	cores should be grounded near the inverter and another point should be
	connected to the motor's cover).
178	Don't put the strong and weak electricity cables in parallel or bundle these
	cables together. Other devices should also be away from the inverter. The
	devices wire should be away from the I/O of the inverter. The signal cables and
	power cables should be shielded cables. Devices with strong electric field and
	magnetic field should be away and orthogonal from the inverter.

2-5-2. Local wiring and grounding

- The cable connected inverter and motor (cables from U, V, W points) should not parallel with power supply calbe (R, S, T or L, N terminal input wire). The distance should be more than 30cm.
- (2) Inverter's output cables from U, V, W terminals is recommend to put in metal

tube or slot.

- (3) Control signal cables should be shield and the shield layer should be connected with inveter's PE terminal, then ground the point near the inverter.
- (4) The grounding cable of inverter's PE terminal should be connected to ground directly.It can't connect to other devices' grounding cables.

(5) Don't put the signal cables in parallel with the power cables (R, S, T or L, N with U, V, W) or bundle these cables together, at least 20~60 cm distance shoule be kept (related with power current), If the signal cables and power cables needed to be intersected, they should be vertical to each other, as shown in Fig 2-11.

Fig. 2-11 Wiring requirement of system

- (6) The weak electricity grounding cable such as control signal and sensors should be separated with strong electricity grounding cable.
- (7) Do not connect other devices to inverter's power input terminals (R, S, T or L, N).

3 VFD running and operation

3-1. VFD running

3-1-1. Command channel of VFD running

We can control the inverter's START, STOP, JOG and other running actions by three command channels.

1. Operation panel

keys on the operation panel (default setting)

2. Control terminals

FWD, REV, COM can form 2-wire control; one terminal of X1~X4, X6 and

FWD, REV can form 3-wire control.

3. Running channel choice

Control the start, stop of VFD through upper device or other devices communicating with VFD.

Parameter P0.03 can choose the command channel.

Warning: The user must debug the system after changing the command channel to make sure it can meet the system requirement, otherwise device damage and physical injury will happen.

3-1-2. VFD frequency setting channel

In common operating mode, there are 8 channels to set the frequency:

- 0: analog potentiometer
- 1: **A** and **b** keys on the operate panel
- 2: Function code on the operate panel
- 3: Terminals UP/DOWN
- 4: Serial port
- 5: Analog VI
- 6: Analog CI
- 7: Pulse terminal (PULSE)
3-1-3. VFD working state

There are two running state: stop and running.

Stop state: After the inverter powered on and initialized, if no operating command is input, the inverter will enter standby state.

Running state: The inverter enters running state after it receives running command.

3-1-4. VFD running mode

VH3 VFD has five kinds of running mode.

0: Jog running

When the inverter is in the standby state, it will running according to jog frequency after receiving jog running command

(e.g after pressing

BEV key)

1: Close loop

Set the close loop parameter P0.01=8, VFD will enter close loop mode. It will do PID regulation for setting value and feedback value. PID regulator output is the basic instruction of VFD output frequency. The close loop mode will be switched to other mode through multi-function terminal.

2: PLC running

Set the PLC function parameter P0.01=9, VFD will enter PLC running mode. VFD will run as the preset running mode.

3: Multi-segment speed running

VFD will run with multi-speed through the nonzero combination of multi-function terminal.

3-2. Keyboard

3-2-1. Keyboard layout

Start, speed regulation, stop, brake, running parameter setting and control of the peripheral can be controlled by VFD operate panel and control terminals. Operate panel is shown in Fig.3-2.

Fig 3-2 operate panel

3-2-2. Keyboard function

There are 8 buttons on the operate panel.

Button	Name	Function
RUN	Forward running	In operate panel control mode, press this key to run forward
STOP RESET	Stop/Reset	In operate panel control mode, press this key to stop running. In error mode, press it to return to normal state.
	Program/Exit	Enter or exit programming state
JOG	Jog/Reverse	P3.04=0, invalid
REV	run	P3.04=1, valid
$\langle\!\!\langle$	Increase	Increase data or function code, frequency pause when running
\searrow	Decrease	decrease data or function code, frequency pause when running
Z	Shift/monitor	Choose the data setting bit in editing state, switch the display
	Shirt Holiitoi	state and monitoring parameter in other state

3-2-3. LED and indicator

The operate panel has 5-bit 8-segment LED and 4 state indicators.

3 state indicators are above the LED on the operate panel. From left to right: forward indicator FWD, reverse indicator REV, alarm indicator ALM. The functions of these indicators are shown in Table3-1

Item		n	Function	
		LED	Display VFD present status parameters and se	tting parameters
			Forward running indicator, inverter outputs	If FWD and REV
State Display	FWD	positive phase, the motor will run forward	indicators all light,	
		after connecting to the inverter	it means that the	
func	indi	indicator	Reverse running indicator, inverter outputs	inverter are in DC
tion	cato		negative phase. The motor will run reverse	braking mode
r	r		after connecting to the inverter	
		ALM	This indicator will light when the inverter is a	larming.

Table 3-1 state indicators

3-2-4. Operation method of the panel

Various operations can be done through the operate panel.

1. Status parameter display

Press \bowtie key to display parameter group b. First display the parameter No, then display parameter value after one second.

- (1) it only displayed status parameter when VFD was out of factory, if user needs to check other parameters, please set the parameter P3.41, P3.42.
- (2) When you are checking status monitor parameter, press default monitor parameter display status. The default parameter is setting frequency in stopping state and is output frequency in running state.

2. Parameter setting

Take the following as an example: change function parameter P3.06 from 5.00Hz

to 8.50Hz.

Fig 3-3 parameter editing example

In the third menu, the parameter can't be changed if no bit is flashing, the possible reasons are:

(1) The setting of this parameter can not be changed, such as the actural detected parameters or recorded parameters.

(2) This parameters can only be changed in stop state and can not be changed in running state.

(3) Parameters have been protected. If the lowest bit of P3.01 is set to 1 or 2, all the parameters can not be changed. If you really want to change the setting, please set P3.01 to 0 in advance.

3. Jog running

If the running command channel is operate panel, machine is standby, jog frequency is 5Hz:

Fig 3-4 Jog running example

4. Set user password

If the user password PF.01 is set to 2345. The bold number will flash in fig3-10.

Fig 3-5 input the password

5. Check error parameter

Note:

(1) Press \bowtie key to check parameter P6 in error code display mode, the range is P6.01~P6.06, press \bowtie key, parameter No. will firstly displayed and the parameter value will be displayed after 1s.

(2) While checking, press $\frac{\text{MENU}}{\text{ESC}}$ key to back to error code display.

6. Set frequency via $\textcircled{\otimes}$ and $\Huge{\boxtimes}$

If it is in stopping parameter display mode, P0.01=1, the operation mode is shown below:

(1) Frequency regulation is integral mode;

(2) When always pressing [n], the digital increases from lowest bit of LED, then ten bit starts to increase, so does hundred bit and thousand bit. If you release and press it again, it increases from the lowest bit again.

(3) When always pressing $|\forall|$, the digital decreases from lowest bit of LED, then ten bit starts to decrease, so does hundred bit and thousand bit. If you release and press it again, it decreases from the lowest bit again.

3-3. VFD power on3-3-1. checking after power on

Please make the wire of inverter according to "Wiring" in this manual.

3-3-2. First time power on

After checking the wiring and AC power, switch on the AC power supply to electrify the inverter. The inverter operation panel will display dynamic screen and then the contactor closes. When the LED displays preset frequency, the inverter initialization is completed. The procedure is shown as in Fig 3-7.

Fig 3-7 VFD first time power on operation procedure

4 Function parameter

4-1. Function code

O: Parameters can be changed while running

 \times : Parameters can not be changed while running

-: Parameters can only be read, can not be changed

Group P0: Basic running parameters					
parameter	Name	Setting range	Default	change	
			value		
P0-00	Control mode	0: V/F control	0	0	
		1: no speed sensor and vector control			
		0: digital set (no power-off retentive)			
		1: digital set (power-off retentive)			
		2: VI1 (voltage)			
	Frequency setting	3: VI2 (voltage)			
P0-01	shannal	5: terminal X6 pulse	0	0	
	channel	6: MODBUS-RTU communication			
		7: multi-speed command			
		8: PID			
		9: simple PLC running			
P0-02	Digital set the running frequency	0.00Hz~P0-06(max output frequency)	50.00Hz	0	
	Running command channel	0: operation panel			
P0-03		1: Teminal	0	0	
		2: serial port			
P0-04	Reverse run	0: reverse run enable	0	0	
		1: reverse run disable	Ť		
	Run				
P0-05	forward/reverse	0.0s~3000.0s	0.0s	0	
	dead zone time				
P0-06	Highest ouput frequency	50.00Hz~500.00Hz	50.00Hz	0	
P0-07	Auxiliary frequency	0: digital set (no power-off retentive)	0	0	

	setting channel	1: digital set (power-off retentive)		
		2: VI1 (voltage)		
		3: VI2 (voltage)		
		5: terminal X6 pulse		
		6: MODBUS-RTU communication		
		7: multi-speed command		
		8: PID		
		9: simple PLC running		
		The unit: frequency source selection		
		0: main frequency source A		
		1: operation result of main frequency		
		A and auxiliary frequency source B		
	с	2: frequency source A and B switching		
P0-08	Superposition of	Decade: operational formulas of A and	00	0
	frequency source	В		
		0: A+B		
		1: A-B		
		2: max(A,B)		
		3: min (A,B)		
D O OO	Torque boost	0.0% (automatical torque boost)	0.10/	_
P0-09		0.1%~30.0%	0.1%	0
P0-10	Cut-off frequency	0.00Hz~max output frequency P0-06	50.00Hz	0
DO 12	for torque boost	0.5V 16.0V	6 01117	
P0-12		0.5K~10.0K	0.0KHZ	0
P0-13	selection	1: static S curve Acc/Dec	0	0
	selection	2: dynamic S curve Acc/Dec	-	
D0 14	S curve starting part		20.00/	
P0-14	proportion	0.0%~(100.0%-P0-15)	30.0%	0
P0-15	S curve end part	$0.0\% \sim (100.0\% - P0.14)$	30.0%	0
10-15	proportion		50.070	
P0-16	$\Delta cc/dec$ time unit	0: 1s	1	0
10-10		1: 0.1s	1	0

		2: 0.01s		
	Accerlate time 1	0.00s~650.00s(P0-16=2)	Model	
P0-17		0.0s~6500.0s(P0-16=1)	setting	0
		0s~65000s(P0-16=0)	setting	
P0-18	Decerlate time 1	0.00s~650.00s(P0-16=2)	Madal	
		0.0s~6500.0s(P0-16=1)	Model setting	0
		0s~65000s(P0-16=0)		
DO 10	Upper limit	D0 20 D0 07	50 00H	
P0-19	frequency	P0-20~P0-06	50.00Hz	0
D0 20	Low limit	0.00H D0.10	0.0011	
P0-20	frequency	0.00Hz~P0-19	0.00Hz	0
	Running mode	0: run at low limit frequency		
P0-21	under low limit	1: stop	0	0
	frequency	2: zero speed run		
	V/F curve setting	0: line V/F		
		1: multi-point V/F		
		2: square V/F		
		3: 1.2 nd power V/F		
D0 22		4: 1.4 th power V/F	0	_
P0-22		6: 1.6 th power V/F	0	0
		8: 1.8 th power V/F		
		9: reserved		
		10: V/F complete separation mode		
		11: V/F semidetached mode		
DO 22	Multi-point V/F	0.0011- 00.25	0.0011-	
P0-23	frequency point F1	0.00HZ~F0-23	0.00HZ	0
DO 24	Multi-point V/F		0.0%	0
P0-24	voltage point V1	0.0~100.0%	0.0%	0
DO 25	Multi-point V/F	DO 22 DO 27	0.0011-	
PU-25	frequency point F2	FU-23~PU-27	0.00HZ	0
D0 27	Multi-point V/F	DO 25 DA 02(motor rotad fragments)	0.0011-	0
ru-21	frequency point F3	r0-23~rA-05(motor rated frequency)	0.00HZ	0

P0-28	Multi-point V/F voltage point V3	0.0~100.0%	0.0%	0
P0-32	Carrier frequency regulation as temperature	0: no 1: yes	1	0
P0-33	Motor parameter group selection	0: Motor parameter group 1 1: Motor parameter group 2	0	0
P0-35	Frequency command decimal point	2: 0.01Hz	2	0
P0-38	Auxiliary frequency source offset digital setting when superposition	0.00Hz~max output frequency (P0-06)	0.00Hz	0
P0-39	Digital setting frequency memory selection	0: no memory 1: memory	0	0
P0-40	Running direction	0: default direction1: reserve direction of default direction	0	0
P0-42	Upper frequency offset	0.00Hz~max output frequency (P0-06)	0.00Hz	0
P0-43	V/F oscillation suppression gain	0~100	Model setting	0
P0-44	V/F separation voltage rising time	0.0s~1000.0s Note: the time changed from 0V to rated motor voltage	0.0s	0

		-		
P0-45	V/F separation voltage source	0: digital setting (P0-46) 1: VI1 2: VI2 3: PULSE setting (X6) 4: multi-segment command 5: simple PLC 6: PID 7: communication setting	0	×
P0-50	Speed loop proportion gain 1	1~100	30	0
P0-51	Speed loop integral time 1	0.01s~10.00s	0.50s	0
P0-52	Switching frequency 1	0.00~P0-55	5.00Hz	0
P0-53	Speed loop proportion gain 2	1~100	20	0
P0-54	Speed loop integral time 2	0.01s~10.00s	1.00s	0
P0-55	Switching frequency 2	P0-52~max output frequency P0-06	10.00Hz	0
P0-56	Speed control (drive) torque upper limit source	0: parameter P0-57 setting 1: VI1 2: VI2 3: VI3 4: PULSE setting 5: communication setting 6: MIN(VI1, VI2) 7: MAX(VI1, VI2) 1~7 full scale corresponding to P0-57	0	0
P0-57	Speed control (drive) torque upper limit digital setting	0.0%~200.0%	150.0%	0

P0-58	Slip compensation	50%~200%	100%	0
P0-59	Speed loop filter time constant	0.000s~1.000s	0.050s	0
P0-64	Speed loop integral feature	The unit: integral separation 0: invalid 1: valid	0	0
P0-70	Slip compensation	0.0%~200.0%	0.0%	0
P0-71	VF overexcitation gain	0~200	64	0

	Group P1: frequency parameters					
Parameter	Name	Range	Default value	Change		
P1-01	VI1 filter time constant	0.00s~10.00s	0.10s	0		
P1-02	VI curve 1 min setting	0.00V~P1-04	0.00V	0		
P1-03	VI curve 1 frequency percentage of min setting	-100.0%~+100.0%	0.0%	0		
P1-04	VI curve 1 max setting	P1-02~+10.00V	10.00V	0		
P1-05	VI curve 1 frequency percentage of max setting	-100.0%~+100.0%	100.0%	0		
P1-06	VI2 filter time constant	0.00s~10.00s	0.10s	0		
P1-07	VI curve 2 min setting	0.00V~P1-09	0.00V	0		
P1-08	VI curve 2 frequency percentage of min setting	-100.0%~+100.0%	0.0%	0		
P1-09	VI curve 2 max setting	P1-07~+10.00V	10.00V	0		
P1-10	VI curve 2 frequency percentage of max setting	-100.0%~+100.0%	100.0%	0		
P1-11	VI3 filter time constant	0.00s~10.00s	0.10s	0		

P1-12	VI curve 3 min setting	-10.00V~P1-14	-10.00V	0
P1-13	VI curve 3 frequency percentage of min setting	-100.0%~+100.0%	-100.0%	0
P1-14	VI curve 3 max setting	P1-12~+10.00V	10.00V	0
P1-15	VI curve 3 frequency percentage of max setting	-100.0%~+100.0%	100.0%	0
P1-18	PULSE min setting	0.00kHz~P1-20	0.00kHz	0
P1-19	PULSE frequency percentage of min setting	-100.0%~+100.0%	0.0%	0
P1-20	PULSE max setting	P1-18~100.0kHz	50.00kHz	0
P1-21	PULSE frequency percentage of max setting	-100.0%~+100.0%	100.0%	0
P1-22	PULSE filter time constant	0.00s~10.00s	0.10s	0
P1-23	VI curve selection	The unit: VI1 curve selection 1: curve 1 (2 points, refer to P1-02~P1-05) 2: curve 2 (2 points, refer to P1-07~P1-10) 3: curve 3 (2 points, refer to P1-12~P1-15) 4: curve 4 (4 points, refer to P1-25~P1-32) 5: curve 5 (4 points, refer to P1-33~P1-40) Decade: VI2 curve selection, ditto Hundreds place: VI3 curve	321	ο

		selection, ditto		
P1-24	VI under min input setting selection	The unit: VI1 under min input setting selection 0: min input setting 1: 0.0% Decade: VI2 under min input setting selection, ditto Hundreds place: VI3 under min input setting selection, ditto	000	0
P1-25	VI curve 4 min input	-10.00V~P1-27	0.00V	0
P1-26	VI curve 4 min input corresponding setting	-100.0%~+100.0%	0.0%	0
P1-27	VI curve 4 inflection point 1 input	P1-25~P1-29	3.00V	0
P1-28	VI curve 4 inflection point input related setting 1	-100.0%~+100.0%	30.0%	0
P1-29	VI curve 4 inflection point 2 input	P1-27~P1-31	6.00V	0
P1-30	VI curve 4 inflection point 2 input related setting	-100.0%~+100.0%	60.0%	0
P1-31	VI curve 4 max input	P1-29~+10.00V	10.00V	0
P1-32	VI curve 4 max input related setting	-100.0%~+100.0%	100.0%	0
P1-33	VI curve 5 min input	-10.00V~P1-35	-10.00V	0
P1-34	VI curve 5 min input related setting	-100.0%~+100.0%	-100.0%	0
P1-35	VI curve 5 inflection point 1 input	P1-33~P1-37	-3.00V	0
P1-36	VI curve 5 inflection	-100.0%~+100.0%	-30.0%	0

	point 1 input related			
	setting			
D1 27	VI curve 5 inflection	D1 25 D1 20	2.001/	0
P1-37	point 2 input	P1-55~P1-59	5.00V	0
	VI curve 5 inflection			
P1-38	point 2 input related	-100.0%~+100.0%	30.0%	0
	setting			
P1-39	VI curve 5 max input	P1-37~+10.00V	10.00V	0
D1 40	VI curve 5 max input	100.00/ 100.00/	100.00/	
P1-40	related setting	-100.0%~+100.0%	100.0%	0
P1-41	VI1 setting jump point	-100.0%~+100.0%	0.0%	0
D1 42	VI1 setting jump	0.0% 100.0%	0.5%	0
P1-42	amplitude	0.0%~100.0%	0.5%	0
P1-43	VI2 setting jump point	-100.0%~+100.0%	0.0%	0
D1 44	VI2 setting jump	0.00/ 100.00/	0.5%	_
P1-44	amplitude	0.0%~100.0%	0.5%	0
P1-45	VI3 setting jump point	-100.0%~+100.0%	0.0%	0
D1 46	VI3 setting jump	0.00/ 100.00/	0.5%	
P1-46	amplitude	0.0%~100.0%	0.5%	0

Group P2: start and brake parameters					
Parameter	Name	Setting range	Default value	change	
P2-00	Start mode	0: start directly 1: speed tracking then start 2: preexcitation start (AC asynchronous motor)	0	0	
P2-01	Start frequency	0.00Hz~10.00Hz	0.00Hz	0	
P2-02	The duration of start frequency	0.0s~100.0s	0.0s	0	
P2-03	StartDCbrakecurrent/preexcitationcurrent	0%~100%	0%	0	

	percentage			
P2-04	StartDCbraketime/preexcitation time	0.0s~100.0s	0.0s	0
P2-05	Stop mode	0: deceleration stop 1: free stop	0	0
P2-06	DC brake start frequency when stop	0.00Hz~max output frequency P0-06	0.00Hz	0
P2-07	DC brake time when stop	0.0s~100.0s	0.0s	0
P2-08	DC brake current percentage when stop	0%~100%	0%	0
P2-09	DC brake waiting time when stop	0.0s~100.0s	0.0s	0
P2-10	Speed tracking mode	0: from stop frequency1: from working frequency2: from max outputfrequency	0	0
P2-11	Speed tracking speed	1~100	20	0
P2-12	Brake using rate	0%~100%	100%	0

Group P3: auxiliary running parameters					
Parameter	Name	Setting range	Default value	change	
		Dormancy frequency			
P3-00	Wake up frequency	F3-01~max output frequency	0.00Hz	0	
		P0-06			
P3-01	D f	0.00Hz~wake up frequency	0.0011		
	Dormancy frequency	P3-00	0.00Hz	0	
P3-02	Wake up delay time	0.0s~6500.0s	0.0s	0	
P3-03	Dormancy delay time	0.0s~6500.0s	0.0s	0	
P3-04	Terminal iog first	0: invalid	0	0	
	Terminar jog filst	1: valid	0		
P3-05	Module temperature	0°C~100°C	75°C	0	

	reached			
P3-06	Jog run frequency	0.00Hz~max output frequency P0-06	2.00Hz	0
P3-07	Jog acceleration time	0.0s~6500.0s	20.0s	0
P3-08	Jog deceleration time	0.0s~6500.0s	20.0s	0
P3-10	Power on arrival time	0h~65000h	Oh	0
P3-11	Running arrival time	0h~65000h	Oh	0
P3-12	Start the protection	0: not protect 1: protect	0	0
P3-13	Fan	0: fan works when running 1: fan always work	0	0
P3-14	Acceleration time 2	0.0s~6500.0s	Model setting	0
P3-15	Deceleration time 2	0.0s~6500.0s	Model setting	0
P3-16	Acceleration time 3	0.0s~6500.0s	Model setting	0
P3-17	Deceleration time 3	0.0s~6500.0s	Model setting	0
P3-18	Acceleration time 4	0.0s~6500.0s	Model setting	0
P3-19	Deceleration time 4	0.0s~6500.0s	Model setting	0
P3-20	Multi-segment frequency 0	-100.0%~+100.0%	0.0%	0
P3-21	Multi-segment frequency	-100.0%~+100.0%	0.0%	0
P3-22	Multi-segment frequency 2	-100.0%~+100.0%	0.0%	0
P3-23	Multi-segment frequency 3	-100.0%~+100.0%	0.0%	0
P3-24	Multi-segment frequency	-100.0%~+100.0%	0.0%	0

	4			
	4			
P3-25	Multi-segment frequency	-100.0%~+100.0%	0.0%	0
	5			
P3-26	Multi-segment frequency	-100.0%~+100.0%	0.0%	0
15 20	6	100.070 1100.070	0.070	
D2 27	Multi-segment frequency	100.00/ 100.00/	0.0%	0
F 3-27	7	-100.0%~+100.0%	0.0%	0
D2 00	Multi-segment frequency	100.00/	0.00/	
P3-28	8	-100.0%~+100.0%	0.0%	0
	Multi-segment frequency			
P3-29	9	-100.0%~+100.0%	0.0%	0
	Multi-segment frequency			
P3-30	10	-100.0%~+100.0%	0.0%	0
	Multi-segment frequency			
P3-31	11	-100.0%~+100.0%	0.0%	0
P3-32	Multi-segment frequency			
	12	-100.0%~+100.0%	0.0%	0
	Multi-segment frequency		0.004	
P3-33	13	-100.0%~+100.0%	0.0%	0
	Multi-segment frequency			
P3-34	14	-100.0%~+100.0%	0.0%	0
	Multi-segment frequency			
P3-35	15	-100.0%~+100.0%	0.0%	0
P3-37	Jump frequency 1	0.00Hz~max output frequency	0.00Hz	0
P3-38	Jump frequency 2	0.00Hz~max output frequency	0.00Hz	0
20.00	Jump frequency		0.0477	
P3-39	amplitude	0.00Hz~max output frequency	0.01Hz	0
	Jump frequency is	0: not effective		
P3-40	effective in acc/dec	1: effective (in vector	0	0
	process	condition)		
	Frequency detection value		T O 0.000	
P3-41	(FDT1 level)	0.00Hz~max output frequency	50.00Hz	0

P3-42	Frequency detection lag value (FDT1 level)	0.0%~100.0%	5.0%	0
P3-43	Frequency arrival detection amplitude	0.0%~100.0%(max output frequency)	0.0%	0
P3-44	Frequency detection value (FDT2 level)	0.00Hz~max output frequency	50.00Hz	0
P3-45	Frequency detection lag value (FDT2 level)	0.0%~100.0%	5.0%	0
P3-46	Frequency arrival detection value 1	0.00Hz~max output frequency	50.00Hz	0
P3-47	Frequency arrival detection 1 amplitude	0.0%~100.0%(max output frequency)	0.0%	0
P3-48	Frequency arrival detection value 2	0.00Hz~max output frequency	50.00Hz	0
P3-49	Frequency arrival detection 2 amplitude	0.0%~100.0%(max output frequency)	0.0%	0
P3-50	Acceleration time ¹ / ₂ switching frequency point	0.00Hz~max output frequency	0.00Hz	0
P3-51	deceleration time ¹ / ₂ switching frequency point	0.00Hz~max output frequency	0.00Hz	0
P3-52	Current arrival detection value 1	0.0%~300.0%(motor rated current)	100.0%	0
P3-53	Current arrival detection 1 amplitude	0.0%~300.0%(motor rated current)	0.0%	0
P3-54	Current arrival detection value 2	0.0%~300.0%(motor rated current)	100.0%	0
P3-55	Current arrival detection 2 amplitude	0.0%~300.0%(motor rated current)	0.0%	0
P3-56	Zero current detection value	0.0%~300.0%(motor rated current)	5.0%	0
P3-57	Zero current detection delay time	0.01s~600.00s	0.10s	0

P3-58	Software overcurrent point	0: 0.0%(not detection) 1: 0.1%~300.0%(motor rated current)	200.0%	0
P3-59	Software overcurrent detection delay time	0.00s~600.00s	0.00s	0
P3-60	VI1 input voltage low limit	0.00V~P3-61	3.10V	0
P3-61	VI1 input voltage upper limit	P3-60~11.00V	6.80V	0
P3-62	Timing function selection	0: invalid 1: valid	0	0
P3-63	Timing time setting	0: P3-64 setting	0	0
P3-64	Setting run time	0.0Min~6500.0Min	0.0Min	0
P3-65	Present run arrival time	0.0Min~6500.0Min	0.0Min	0

Group P4: terminal function parameters				
Parameter	Name	Range	Default value	change
P4-00	Input terminal X1 function	 0: no function 1: forward run FWD or run command 2: reverse run REV or run direction (note: set to 1, 2, should use together with P4-11) 	1	0
P4-01		 3: three wires mode run control 4: forward jog(FJOG) 5: reverse jog(RJOG) 6: free stop 	4	0
P4-02	Input terminal X2 function	7: fault reset(RESET)8: external fault normally open input9: terminal UP10: terminal DOWN	9	0

P4-03	Input terminal X3 function	 11: UP/DOWN setting reset(terminal, keyboard) 12: running pause 13: acc/dec time selection terminal 1 14: acc/dec time selection terminal 2 15: PID pause 	12	0
P4-04	Input terminal X4 function	 16: multi-segment command terminal 1 17: multi-segment command terminal 2 18: multi-segment command terminal 3 19: multi-segment command terminal 4 20: swing frequency pause 21: acc/dec prohibition 22: torque control prohibition 23: length count input 	13	0
P4-06	Input terminal X6 function	 24: length reset 24: length reset 25: counter input 26: counter reset 27: PULSE frequency input (only X6 is valid) 28: PLC state reset 29: frequency source switching(main and auxiliary frequency source switching) 32: external fault normally close input 33: frequency modification enable 34: PID integral pause 35: PID functional direction reverse 36: PID parameter switching 37: external stop terminal 1 38: external stop terminal 2 39: urgent stop(for vector mode) 40: decelerate DC brake 41: user-defined fault 1 42: user-defined fault 2 43: run time reset 44: motor selection terminal 1 45: motor selection terminal 2 	0	Ο

P4-10	Terminal UP/DOWN speed	0.001Hz/s~65.535Hz/s	1.00Hz/s	0
		0: two-wire mode 1		
P4-11	Terminal	1: two-wire mode 2	0	0
	command method	2: three-wire mode 1		
		3: three-wire mode 2		
P4-12	X terminal filter time	0.000s~1.000s	0.010s	0
		0: high level valid		
		1: low level valid		
	X terminal	The unit: X1		
P4-13	effective state	Decade: X2	00000	0
	selection 1	Hundreds place: X3		
		Kilobit: X4		
		Myriabit: X6		
P4-15	X1 delay time	0.0s~3600.0s	0.0s	0
P4-16	X2 delay time	0.0s~3600.0s	0.0s	0
P4-17	X3 delay time	0.0s~3600.0s	0.0s	0
D4 19	DO suturt us de	0: high speed pulse output	0	
P4-18	DO output mode	1: DO output		0
		0: no output		
		1: VFD is running		
		2: fault output(free stop fault)		
		3: frequency level detection FDT1 output		
		4: frequency level detection FDT2 output		
	2.0	5: frequency arrival		
P4-19	DO output	6: zero speed run (not output when stop)	0	0
	selection	7: zero speed run 2(output when stop)		
		8: upper limit frequency arrival		
		9: low limit frequency arrival (related to		
		10: motor overload warning		
		11. VED overload warning		
		12: communication setting		

			12. to many limit	
			13: torque limit	
			14: frequency limit(only low limit	
			frequency is valid, upper limit frequency	
			already limited)	
			15: frequency 1 arrival output	
			16: frequency 2 arrival output	
			17: current 1 arrival output	
			18: current 2 arrival output	
			19: setting counter value arrival	
			20: appointed counter value arrival	
			21: run ready	
			22: VI1>VI2	
			23: VI1 input overlimit	
			24: output when under voltage	
			25: accumulated power on time arrival	
			26: time arrival output	
			27: length arrival	
			28: simple PLC cycle finished	
			29: accumulated run time arrival	
			30: positioning completed(reserved)	
			31: positioning close(reserved)	
			32: low limit frequency arrival (output	
			when stop)	
			33: fault output(not output for free stop	
			fault and under voltage)	
			34: module temperature arrival	
			35: alarm output(all fault)	
			36: motor overheat warning(no motor	
			temperature sensor by now)	
			37: reverse running	
			38: off load	
			30: output aurrent overlimit	
			40: zero gurrent state	
			40. Zelo cultent state	
	TATDTO			
P4-20	IAIBIC	output	απο	
1120	selection			

	P4-25 AO output selection	 0: run frequency 1: setting frequency 2: motor speed 3: output current 4: output voltage 5: output power 6: motor output torque(absolute value, percentage relative to the motor) 		
P4-25		 7: VI1 8: VI2 10: PULSE input(100.0% is corresponding to 100.0kHz) 11: communication setting 12: counter value 13: length 14: motor output torque(actual value, percentage relative to the motor) 15: output current(100.0% is corresponding to 1000.0A) 16: output voltage(100.0% is corresponding to 1000.0V) 	0	Ο
P4-27	AO zero bias coefficient	-100.0%~+100.0%	0.0%	0
P4-28	AO gain	-10.00~+10.00	1.00	0
P4-32	FMR output delay time	0.0s~3600.0s	0.0s	0
P4-33	RELAY1 output delay time	0.0s~3600.0s	0.0s	0
P4-37	DO effective state selection	0: positive logic 1: reverse logic The unit: FMR Decade: RELAY1	00000	0

Group P5: protection function parameters				
Parameter	Name	Range	Default value	Change
P5-00	Motor overload protection mode	0: prohibition 1: permission	1	0
P5-01	Motor overload protection gain	0.20~10.00	1.00	0
P5-02	Overvoltage speed loss gain	Reversed	-	-
P5-03	Overvoltage speed loss protection voltage	Reversed	-	-
P5-04	Input open-phase protection	The unit: input open-phase protection Decade: contactor close protection 0: prohibition 1: permission	11	0
P5-05	Output open-phase protection	0: prohibition 1: permission	1	0
P5-06	Overcurrent speed loss gain	Reserved	-	-
P5-07	Overcurrent speed loss protection current	Reserved	-	-
P5-08	Power on protection for short circuit relative to ground	0: prohibition 1: permission	1	0
P5-09	Fault auto-reset times	0~20	0	0
P5-10	Fault auto-reset space time	0.1s~100.0s	1.0s	0
P5-11	Fault relay action when fault auto-reset	0: no action 1: action	0	0
P5-12	Motor overload warning coefficient	50%~100%	80%	0
P5-13	Protection action 1 when fault	The unit: motor overload(Err 9)	00000	0

		0: free stop		
		1: stop as stop mode		
		2: continue running		
		Decade: input		
		open-phase(Err10)		
		Hundreds place: output		
		open-phase(Err11)		
		Kilobit: external		
		fault(Err15)		
		Myriabit: user-defined fault		
		1(Err16)		
		The unit: user-defined fault		
		2(Err17)		
		0: free stop		
		Decade: communication		
		error(Err22)		
DC 14	Protection action 2 when fault	0: free stop	00000	_
P5-14		1: stop as the stop mode		0
		Hundreds place: eeprom		
		read write error(Err23)		
		Kilobit: load off(Err24)		
		Myriabit: run time arrival		
		(Err25)		
		The unit: power on time		
		arrival(Err27)		
		0: free stop		
	Protection action 3 when	1: stop as stop mode		
P5-15	foult	2: continue running	00000	0
	laun	Decade: PID feedback lost		
		when running(Err28)		
		0: free stop		
		1: stop as stop mode		

		2: continue running		
P5-18	Continue running frequency when fault	 0: run at present frequency 1: run at setting frequency 2: run at upper limit frequency 3: run at low limit frequency 4: run at error backup frequency 	0	Ο
P5-19	Not stop when instant power off	0~2	0	0
P5-20	Instant stop pause judgement voltage	80.0%~100.0%	85.0%	0
P5-21	Not stop when Instant power off voltage rising judgement time	0.0s~100.0s	0.5s	0
P5-22	Not stop when instant power off judgement voltage	60.0%~100.0%(standard bus voltage)	80.0%	0
P5-23	Motor temperature sensor type	0: no temperature sensor 1: PT100 2: PT1000	0	0
P5-24	Motor overheat protection threshold value	0°C~200°C	110°C	0
P5-25	Motor overheat warning threshold value	0°C~200°C	90°C	0
P5-28	Off load protection	0: invalid 1: valid	0	0
P5-29	Off load detection level	0.0~100.0%	10.0%	0
P5-30	Off load detection time	0.0s~60.0s	1.0s	0
P5-33	Error backup frequency setting	0.0%~100.0% (100.0% corresponding to	100.0%	0

	the max frequency P0-06)	

Group P6: fault records parameters				
Parameter	Name	Range	Default setting	Change
P6-00	The third time (latest)fault type	0: no fault	-	×
P6-01	The second time fault type	1: accelertion	-	×
P6-00 P6-01 P6-02	The third time (latest) fault type The second time fault type	0: no fault 1: accelertion overcurrent 2: deceleration overcurrent 3: constant speed overcurrent 4: acceleration overvoltage 5: deceleration overvoltage 6: constant speed overvoltage 6: constant speed overvoltage 7: undervoltage fault 8: VFD overload 9: motor overload 10: input open-phase 11: output open-phase 12: the radiator overload fault 14: contactor fault 15: external fault 16: user-defined fault 1	- -	×
		17: user-defined fault 2		

		18: current detection fault		
		circuit to ground		
		fault		
		20: current limiting		
		fault		
		21: motor tuning		
		fault		
		22: communication		
		(overtime) fault		
		23: EEPORM read		
		write fault		
		24: off load		
		25: run time arrival		
		26: switch motor		
		when running		
		27: power on time		
		arrival		
		28: PID feedback		
	The third time (latest) fault			
P6-03	frequency	-	-	×
P6-04	The third time (latest) fault current	-	-	×
P6-05	The third time (latest) fault bus voltage	-	-	×
P6-06	The third time (latest) fault input	-	-	×
	The third time (1-tt) (1)			
P6-07	output terminal state	-	-	×
P6-08	The third time (latest) fault VFD state	-	-	×
P6-09	The third time (latest) fault	-	-	×

	power on time			
P6-10	The third time (latest) fault run time	-	-	×
P6-11	The second time fault frequency	-	-	×
P6-12	The second time fault current	-	-	×
P6-13	The second time fault bus voltage	-	-	×
P6-14	The second time fault input terminal state	-	-	×
P6-15	The second time fault output terminal state	-	-	×
P6-16	The second time fault VFD state	-	-	×
P6-17	The second time fault power on time	-	-	×
P6-18	The second time fault run time	-	-	×
P6-19	The first time fault frequency	-	-	×
P6-20	The first time fault current	-	-	×
P6-21	The first time fault bus voltage	-	-	×
P6-22	The first time fault input terminal state	-	-	×
P6-23	The first time fault output terminal state	-	-	×
P6-24	The first time fault VFD state	-	-	×
P6-25	The first time fault power on time	-	-	×
P6-26	The first time fault run time	-	-	×

Group P7: process control close-loop parameters				
Parameter	Name	Range	Default value	change
P7-01	Setting channel selection	0: FA-01 setting 1: VI1	0	0

		2: VI2		
		4: PULSE setting(X6)		
		5: communication setting		
		6: multi-segment instruction		
		setting		
		0: VI1		
		1: VI2		
		2: reserved		
P7-02	Feedback channel selection	3: VI1-VI2	0	0
		4: VI1+VI2		
		5: PULSE setting (X6)		
		6: communication setting		
P7-03	PID feedback filter time	0.00s~60.00s	0.00s	0
P7-04	PID output filter time	0.00s~60.00s	0.00s	0
P7-05	Operate panel setting	0.0%~100.0%	50.0%	0
P7-06	PID setting change time	0.00s~650.00s	0.00s	0
	PID reverse run cut-off	0.00Hz~max output	0.0011	
P/-0/	frequency	frequency	0.00HZ	0
P7-08	PID deviation limit	0.0%~100.0%	0.0%	0
P7-09	PID differential limit	0.00%~100.00%	0.10%	0
P7-10	Proportion gain P	0.0~100.0	20.0	0
P7-11	Integral time I	0.01s~10.00s	2.00s	0
P7-12	Differential time D	0.000s~10.000s	0.000s	0
		0: not switch		
D7 12	PID parameter switching	1: switch by terminal	0	0
P7-15	condition	2: auto-switch as the	0	0
		deviation		
D7 14	PID parameter switching	0.00% D7 15	20.0%	0
1 /-14	deviation 1	0.0%~17-15	20.0%	0
P7-15	PID parameter switching	P7-14~100.0%	80.0%	0
17-15	deviation 2	1 /-1+-100.0/0	00.070	0
P7-16	PID proportion gain P2	0.0~100.0	20.0	0

P7-17	PID integral time I2	0.01s~10.00s	2.00s	0
P7-18	PID differential time D2	0.000s~10.000s	0.000s	0
P7-19	PID function direction	0: positive function 1: negative function	0	0
P7-20	PID setting feedback range	0~65535	1000	0
P7-21	PID max deviation between two times of output	0.00%~100.00%	1.00%	0
P7-22	PID min deviation between two times of deviation	0.00%~100.00%	1.00%	0
P7-23	PID initial value	0.0%~100.0%	0.0%	0
P7-24	PID intial value hold time	0.00s~650.00s	0.00s	0
P7-25	PID operation mode (operation when stop)	0: not operation when stop 1: operation when stop	0	0
P7-26	PID integral feature	The unit: integral separation 0: invalid 1: valid Decade: stop integral when output reached the limit value 0: not stop integral 1: stop integral	00	0
P7-27	PID feedback missing detection value	0.0%: not judge the feedback missing 0.1%~100.0%	0.0%	0
P7-28	PID feedback missing detection time	0.0s~20.0s	0.0s	0
P7-29	PID sampling period	Reversed		

	Group P8: simple PLC running parameters				
Parameter	Name	Range	Default value	Change	
P8-00	Simple PLC running mode	0: single time running end stop 1: single time running end keep the final value 2: keep cycling	0	0	
P8-01	Simple PLC segment 0 run time	0.0~6500.0s(h)	0.0s(h)	0	
P8-02	Simple PLC segment 0 acceleration/deceleration time	0~3	0	0	
P8-03	Simple PLC segment 1 run time	0.0~6500.0s(h)	0.0s(h)	0	
P8-04	Simple PLC segment 1 acceleration/deceleration time	0~3	0	0	
P8-05	Simple PLC segment 2 run time	0.0~6500.0s(h)	0.0s(h)	0	
P8-06	Simple PLC segment 2 acceleration/deceleration time	0~3	0	0	
P8-07	Simple PLC segment 3 run time	0.0~6500.0s(h)	0.0s(h)	0	
P8-08	Simple PLC segment 3 acceleration/deceleration time	0~3	0	0	
P8-09	Simple PLC segment 4 run time	0.0~6500.0s(h)	0.0s(h)	0	
P8-10	Simple PLC segment 4 acceleration/deceleration time	0~3	0	0	
P8-11	Simple PLC segment 5 run time	0.0~6500.0s(h)	0.0s(h)	0	
P8-12	Simple PLC segment 5 acceleration/deceleration time	0~3	0	0	
P8-13	Simple PLC segment 6 run time	0.0~6500.0s(h)	0.0s(h)	0	
P8-14	Simple PLC segment 6 acceleration/deceleration time	0~3	0	0	
P8-15	Simple PLC segment 7 run time	0.0~6500.0s(h)	0.0s(h)	0	
P8-16	Simple PLC segment 7	0~3	0	0	

	acceleration/deceleration time			
P8-17	Simple PLC segment 8 run time	0.0~6500.0s(h)	0.0s(h)	0
P8-18	Simple PLC segment 8 acceleration/deceleration time	0~3	0	0
P8-19	Simple PLC segment 9 run time	0.0~6500.0s(h)	0.0s(h)	0
P8-20	Simple PLC segment 9 acceleration/deceleration time	0~3	0	0
P8-21	Simple PLC segment 10 run time	0.0~6500.0s(h)	0.0s(h)	0
P8-22	Simple PLC segment 10 acceleration/deceleration time	0~3	0	0
P8-23	Simple PLC segment 11 run time	0.0~6500.0s(h)	0.0s(h)	0
P8-24	Simple PLC segment 11 acceleration/deceleration time	0~3	0	0
P8-25	Simple PLC segment 12 run time	0.0~6500.0s(h)	0.0s(h)	0
P8-26	Simple PLC segment 12 acceleration/deceleration time	0~3	0	0
P8-27	Simple PLC segment 13 run time	0.0~6500.0s(h)	0.0s(h)	0
P8-28	Simple PLC segment 13 acceleration/deceleration time	0~3	0	0
P8-29	Simple PLC segment 14 run time	0.0~6500.0s(h)	0.0s(h)	0
P8-30	Simple PLC segment 14 acceleration/deceleration time	0~3	0	0
P8-31	Simple PLC segment 15 run time	0.0~6500.0s(h)	0.0s(h)	0
P8-32	Simple PLC segment 15 acceleration/deceleration time	0~3	0	0
P8-33	Simple PLC power-off retentive	The unit: power-off	00	0
		retentive		
-------	--------------------------	---------------------	---	---
		0: no memory		
		1: memory		
		Decade: stop memory		
		0: no memory		
		1: memory		
D9 24	Simula DI Come time anit	0: second	0	
Pð-34	Simple PLC run time unit	1: hour	0	0

Group PA: motor basic parameters				
parameter	Name	Range	Default value	Change
PA 00	Motor rated	0.1kW.1000.0kW	Model	0
PA-00	power	0.1K W~1000.0K W	setting	0
DA 01	Motor rated	1V.2000V	Model	0
1A-01	voltage	1 V~2000 V	setting	0
		0.01A~655.35A		
DA 02	Motor rated	(VFD power ≤55kW)	Model	0
PA-02	current	0.1A~6553.5A	setting	0
		(VFD power >55kW)		
PA-03	Motor rated	0.0111a may autnut frequency	Model	0
	frequency	0.01H2~max output frequency	setting	
DA 04	Motor rated	1	Model	
PA-04	speed	Irpm~65555rpm	setting	0
		0: normal asynchronous motor		
PA-05	Motor type	1: various frequency	0	0
		asynchronous motor		
		0.01A~PA-02		
DA OC	Asynchronous	(VFD power ≤55kW)	Tuning	_
PA-06	motor no-load	0.1A~PA-02	parameter	0
	current	(VFD power >55kW)		
PA-07	Asynchronous	0.001Ω~65.535Ω	Tuning	0

	motor stator	(VFD power ≤55kW)	parameter	
	resistor	0.0001Ω~6.5535Ω(VFD		
		power >55kW)		
		0.001Ω~65.535Ω		
D 4 00	Asynchronous	(VFD power ≤55kW)	Tuning	
PA-08	motor rotor	0.0001Ω~6.5535Ω	parameter	0
	resistor	(VFD power >55kW)		
	A 1	0.01mH~655.35mH		
D 4 00	Asynchronous motor leakage inductance	(VFD power ≤55kW)	Tuning	
PA-09		0.001mH~65.535mH	parameter	0
		(VFD power >55kW)		
	Asynchronous motor mutual inductance	0.1mH~6553.5mH		
D4 10		(VFD power ≤55kW)	Tuning	
PA-10		0.01mH~655.35mH	parameter	0
		(VFD power >55kW)		
		0: no operation		
		1: asynchronous motor static		
PA-17		tuning 1		
	Tuning	2: asynchronous motor	0	0
	selection	dynamic tuning		
		3: asynchronous motor static		
		tuning 2		

Group PB: special application parameters				
Parameter	Name	Range	Default value	change
		0: JOG invalid		
PB-00		1: forward and reverse run		
	JOG function	switching	0	0
		2: forward jog		
		3: reverse jog		
PB-01	STOP function	0: STOP/RES is valid in	1	0

		keyboard mode		
		1: STOP/RES is valid in any		
		mode		
		1: G type (constant torque		
DD 00		load model)	Model	
PB-02	VFD model display	2: P type (fan, water pump	setting	0
		load model)	-	
	Inverter module			
PB-03	radiator	0.0°C~100.0°C	-	×
	temperature			
	Rectifier bridge			
PB-04	radiator	Product number	_	
12 01	temperature			
	Accumulated run			
PB-05	time	0h~65535h	-	×
DD 06	Droduct number			~
DD 07		-	-	~
PB-0/	Software version	-	-	×
PB-08	Load speed display	0.0001~6.5000	1.0000	0
	coefficient			
		The unit: U0-22 decimal		
		number		
		0: 0 decimal place		
		1: 1 decimal place		
DD 00	Load speed display	2: 2 decimal places	21	_
PB-09	decimal position	3: 3 decimal places	21	0
		Decade: U0-17/U0-18		
		decimal number		
		1: 1 decimal place		
		2: 2 decimal places		
	Accumulated			
РВ-13	power on time	0h~65535h	-	×
PB-14	Accumulated	0~65535 degree	-	×

	power consumption			
PB-15	Pulse number per meter	0.1~6553.5	100.0	0
PB-16	Setting count value	1~65535	1000	0
PB-17	Appointed count value	1~65535	1000	0
PB-18	Setting length	0m~65535m	1000 m	0
PB-19	Actual length	0m~65535m	0m	0
PB-20	Swing frequency setting method	0: relative to the centerfrequency1: relative to the maxfrequency	0	0
PB-21	Swing frequency range	0.0%~100.0%	0.0%	0
PB-22	Swing frequency period	0.1s~3000.0s	10.0s	0
PB-23	Jump frequency range	0.0%~50.0%	0.0%	0
PB-24	Swing frequency triangle wave rising time	0.1%~100.0%	50.0%	0
PB-25	User password	0~65535	0	0
PB-26	Parameter initialization	0: no operation01: reset to facotry setting,no include motor parameters02: clear away the records	0	0
PB-27	Read only user password(can be modified)	0: can be modified 1: cannot be modified	0	0
PB-30	Torque control	0: speed control 1: torque control	0	0
PB-31	Driving torque	0: digital setting 1 (A0-03)	0	0

	1: :	1 3771		
	upper limit source	1: VII		
		2: V12		
		4: PULSE		
		5: communication setting		
		6: MIN(VI1,VI2)		
		7: MAX(VI1,VI2)		
		(option 1-7 full scale relative		
		to PB-32 digital setting)		
PB-32	Drive torque upper limit	-200.0%~200.0%	150.0%	0
PB-33	Torque acceleration time	0.00s~650.00s	0.00s	0
PB-34	Torque deceleration time	0.00s~650.00s	0.00s	0
PB-35	Torque control forward max frequency	0.00Hz~max output frequency	50.00Hz	0
PB-36	Torque control reverse max frequency	0.00Hz~max output frequency	50.00Hz	0
DD 27	Wave-to-wave	0: disable	1	_
PB-37	current limit enable	1: enable	1	0
			Model	
DD 20	Under voltage	200.001/ 2000.01/	setting	_
PB-38	point setting	200.00 V ~2000.0 V	380V	0
			350V	
DD 20	Over voltage point	200 0M 2200 0M	Model	
PB-39	setting	200.0V~2200.0V	setting	0
PB-40	Dead area time adjustment special for -1140V	100%~200%	150%	0
PB-41	SVC optimal	1: optimal mode 1	2	0

	selection	2: optimal mode 2		
PB-42	Current detection compensation	0~100	5	0
PB-43	Dead area compensation mode	0: not compensate 1: compensation mode 1	1	0
PB-44	Modulation mode	0: asynchronous modulation 1: synchronous modulation	0	0
PB-45	DPWM switching upper limit frequency	5.00Hz~max output frequency	8.00Hz	0
PB-46	Random PWM	0: random PWM invalid 1~10: PWM carrier frequency random depth	0	0

Group PC: communication parameter					
Parameter	Name	Range	Default value	Change	
PC-00	Serial port communication protocol	0: MODBUS-RTU protocol	0	×	
PC-01	Device address	0: broadcast address 1~247 (MODBUS,Profibus-DP,CANlink)	1	0	
PC-02	Baud rate	The unit: MODBUS 0: 300BPS 1: 600BPS 2: 1200BPS 3: 2400BPS 4: 4800BPS 5: 9600BPS 6: 19200BPS	6005	0	

		7: 38400BPS		
		0: no parity (8-N-2)		
		1: even parity (8-E-1)		
PC-03	MODBUS data format	2: odd parity (8-O-1)	0	0
		3: no parity (8-N-1)		
		(MODBUS is effective)		
DC 04	MODBUS answer	0 ~ 20ms	2	0
PC-04	delay	(MODBUS is effective)		
DC 06	Communication	0.0: invalid	0.0	0
PC-06	overtime	0.1 ~ 60.0s	0.0	0
DC 07	Read current resolution	0: 0.01A	0	0
rC-07	through communication	1: 0.1A	0	0

	Group A0: second motor parameters					
Parameter	Name	Range	Default value	Change		
A0-00	Motor rated power	0.1kW~1000.0kW	Model	0		
110 00	motor rated power	0.1k w ~ 1000.0k w	setting	Ŭ		
AO 01	Motor rated	1W-2000W	Model	0		
A0-01	voltage	1 V~2000 V	setting	0		
		0.01A~655.35A				
A0-02	Motor rated	(VFD power \leq 55kW)	Model	0		
	current	0.1A~6553.5A	setting	0		
		(VFD power > 55kW)				
40.02	Motor rated		Model			
A0-05	frequency	0.01Hz~max output frequency	setting	0		
40.04	Matanantalanaad	1	Model			
A0-04	Motor rated speed	1rpm~65555rpm	setting	0		
		0: normal asynchronous motor				
A0-05	Motor type	1: variable frequency asynchronous	0	0		
		motor				
A0-06	Asynchronous	0.01A~A2-03	Model	0		

	motor no-load	(VFD power \leq 55kW)	setting	
	current	0.1A~A2-03		
		(VFD power > 55kW)		
	Agunahaanaya	0.001Ω~65.535Ω		
A.O. 07	Asynchronous	(VFD power \leq 55kW)	Model	0
A0-07	motor stator	0.0001Ω~6.5535Ω	setting	0
	resistor	(VFD power > 55kW)		
	A	0.001Ω~65.535Ω		
10.00	Asynchronous	(VFD power \leq 55kW)	Model	_
A0-08	motor rotor	0.0001Ω~6.5535Ω	setting	0
	resistor	(VFD power > 55kW)		
		0.01mH~655.35mH		
10.00	A0-09 motor leakage inductance	(VFD power \leq 55kW)	Model	
A0-09		0.001mH~65.535mH	setting	0
		(VFD power > 55kW)		
		0.1mH~6553.5mH		
4.0.10	Asynchronous motor mutual inductance	(VFD power \leq 55kW)	Model	
A0-10		0.01mH~655.35mH	setting	0
		(VFD power > 55kW)		
		0: no tuning		
		1: asynchronous motor static tuning 1		
A0-17	Tuning selection	2: asynchronous motor dynamic	0	0
	-	tuning		
		3: asynchronous motor static tuning 2		
40.21	Speed loop ratio	1 100	20	_
A0-31	gain 1	1~100	30	0
A.O. 22	Speed loop	0.01- 10.00-	0.50	-
A0-32	integral time 1	0.015~10.005	0.508	0
10.22	Switching	0.0011 40.20	5 0011	_
AU-33	frequency 1	0.00HZ~AU-30	5.00HZ	0
10.24	Speed loop ratio	1 100	20	-
AU-34	gain 2	1~100	20	0

A0-35	Speed loop integral time 2	0.01s~10.00s	1.00s	0
A0-36	Switching frequency 2	A0-33~max output frequency	10.00Hz	0
		0: A0-38 setting		
		1: VI1		
		2: VI2		
	Speed control	4: PULSE		
A0-37	(drive) torque	5: communication setting	0	0
	upper limit source	6: MIN(VI1,VI2)		
		7: MAX(VI1,VI2)		
		Option 1 to 7 full scale corresponding		
		to A0-38 digital setting		
	Speed			
10.00	control(drive)	0.00/ 000 00/	150.0%	
A0-38	torque upper limit	0.0%~200.0%		0
	digital setting			
10.10	Speed loop filter	1.01	20	
A0-40	time constant	1~31	28	0
10.11	M axis current	0.0000	2000	
A0-41	loop Kp	0~20000		0
4.0.40	M axis current	0.00000	1200	-
A0-42	loop Ki	0~20000	1300	0
10.10	T axis current loop	0.00000	2000	0
A0-43	Кр	0~20000	2000	
AO 44	T axis current loop	0.20000	1200	-
A0-44	Ki	0~20000	1300	0
	Smood 1-	The unit: integral separation		
A0-45	integral factoria	0: invalid	0	0
	integral features	1: valid		
40.51	Motor acceleration	0: same to first motor		_
A0-51	deceleration time	1: acc/dec time 1	U	0

		2: acc/dec time 2 3: acc/dec time 3 4: acc/dec time 4		
A0-52	Torque boost	0.0%: automatic torque boost 0.1%~30.0%	Model setting	0
A0-53	Oscillation suppression gain	0~100	Model setting	0
A0-54	Motor control mode	0: no speed sensor vector control (SVC) 2: V/F control	0	0

Group AD: VIAO calibration					
Parameter	Name	Range	Default value	Change	
		0.50014 4.00014	Out of factory		
AD-00	v11 measured voltage 1	0.500 v ~4.000 v	calibration	0	
	VII display voltage 1	0.50037 4.00037	Out of factory		
AD-01	vii display voltage i	0.300 V~4.000 V	calibration	0	
	VIII managurad voltage 2	6 000V 0 000V	Out of factory	0	
AD-02	VII measured voltage 2	0.000 v ~9.999 v	calibration	0	
AD 02		6.000V~9.999V	Out of factory	0	
AD-03	VII display voltage 2		calibration	0	
	VI2 massured voltage 1	0.500V~4.000V	Out of factory	0	
AD-04	v12 measured voltage 1		calibration	0	
AD 05	VI2 display voltage 1	0.500V~4.000V	Out of factory	0	
AD-03	v12 display voltage 1		calibration	0	
AD 06	VI2 manurad voltage 2	6 000V 0 000V	Out of factory	0	
AD-00	v12 measured voltage 2	6.000 ~ 9.999 V	calibration	0	
AD 07	VI2 display voltage 2	6 000V-0 000V	Out of factory	0	
AD-07	v 12 display voltage 2	0.000 v ~9.999 v	calibration	0	
AD 12	AQ1 target voltage 1	0.500V~4.000V	Out of factory		
AD-12	AOI target voltage 1		calibration	0	
AD-13	AO1 measured voltage	0.500V~4.000V	Out of factory	0	

	1		calibration	
AD-14	AO1 target voltage 2	6 000V~9 999V	Out of factory	0
	1101 unget (ohuge 2		calibration	-
AD 15	AO1 measured voltage	6 000W 0 000W	Out of factory	0
AD-15	2	0.000 v ~9.999 v	calibration	0
AD-16		0.500V~4.000V	Out of factory	0
	AO2 target voltage 1		calibration	0
AD-17	AO2 measured voltage	0.50037 4.00037	Out of factory	0
	1	0.300 V~4.000 V	calibration	0
AD-18		C 000M 0 000M	Out of factory	0
	AO2 target voltage 2	get voltage 2 6.000 v~9.999 v		0
AD 10	AO2 measured voltage	6 000V 0 000V	Out of factory	0
AD-19	2	0.000 v ~9.999 v	calibration	0

Group U0: monitoring parameters			
Parameter	Name	Min unit	
U0-00	Running frequency (Hz)	0.01Hz	
U0-01	Setting frequency (Hz)	0.01Hz	
U0-02	Output voltage (V)	1V	
U0-03	Output current (A)	0.01A	
U0-04	But voltage (V)	0.1V	
U0-05	Output power (kW)	0.1kW	
U0-06	Output torque (%) percentage of motor rated torque	0.1%	
U0-07	PID setting	1	
U0-08	PID feedback	1	
U0-09	VI1 voltage (V)	0.01V	
U0-10	VI2 voltage (V)/current (mA)	0.01V/0.01mA	
U0-12	VI1 voltage before calibration	0.001V	
U0-13	VI2 voltage (V)/current (mA) before calibration	0.001V/0.01mA	
U0-15	PULSE input pulse frequency	1Hz	
U0-16	PULSE input pulse frequency (Hz)	0.01kHz	
U0-17	Feedback speed (Hz)	0.01Hz	

U0-18	Line speed	1m/Min
U0-19	X input state	1
U0-20	DO output state	1
U0-21	Load speed display (display setting frequency×coefficient when stop, display running frequency×coefficient when running)	1
U0-22	Present power on time	1Min
U0-23	Present running time	0.1Min
U0-24	PLC stage	1
U0-25	Count value	1
U0-26	Length value	1
U0-27	Communication setting value	0.01%
U0-28	Main frequency A display	0.01Hz
U0-29	Auxiliary frequency B display	0.01Hz
U0-30	Setting frequency (%)	0.01%
U0-31	Running frequency (%)	0.01%
U0-32	VFD state	1
U0-33	Target torque (%)	0.1%
U0-34	Power factor angle	0.1°
U0-35	Fault message	1
U0-36	VF separation target voltage	1V
U0-37	VF separation output voltage	1V
U0-38	Remaining running time	0.1Min
U0-39	X terminal input state display	1
U0-40	DO terminal input state display	1

5 Fault diagnosis and solution

5-1. fault and solution

When fault occurs, the error code will show in LED digital tube, the inverter stops outputting and the fault relay contactor is activated. If the motor is running when the fault occurs, motor will free stop. Table 5-1 is the fault list. Please check the fault according to the table or contact us for service.

Error code	Name	Fault	Solution
Err01	Over-current when accelerating	 the VFD output circuit has short circuit or ground connection control mode is vector and has not done the parameter tuning acceleration time too short manual torque boost or V/F curve not suitable voltage too low startup the rotating motor add load when accelerating VFD power is too small 	 check outside fault do the motor parameter tuning increase acceleration time adjust the manual torque boost or V/F curve adjust the voltage to normal range choose speed tracking startup or startup after motor stop move away the additional load choose larger power VFD
Err02	Over-current when decelerating	 the VFD output circuit has short circuit or ground connection control mode is vector and has not done the parameter tuning deceleration time too short 	 check outside fault do the motor parameter tuning increase deceleration time adjust the voltage to

Table 5-1	fault and	solution
-----------	-----------	----------

-			
		4. voltage too low5. add load when decelerating6. has no brake unit and brake resistor	normal range 5. move away the additional load 6. install brake unit and brake resistor
Err03	Constant speed over-current	 the VFD output circuit has short circuit or ground connection control mode is vector and has not done the parameter tuning voltage too low add load when running VFD power is too small 	 check outside fault do the motor parameter tuning adjust the voltage to normal range move away the additional load choose larger power VFD
Err04	Accelerating over-voltage	 input voltage too high external force drive the motor to run in accelerating process acceleration time too short no brake unit and brake resistor 	 adjust the voltage to normal range cancel the external force or install brake resistor increase acceleration time install brake unit and brake resistor
Err05	Decelerating over-voltage	 input voltage too high external force drive the motor to run in decelerating process deceleration time too short no brake unit and brake resistor 	 adjust the voltage to normal range cancel the external force or install brake resistor increase deceleration time install brake unit and brake resistor
Err06	Constant	1. input voltage too high	1. adjust the voltage to

	over-voltage	2. external force drive the motor	normal range
		to run when running	2. cancel the external
			force or install brake
			resistor
		1. momentary power failure	1. reset the fault
		2. VFD input voltage is out of	2. adjust the voltage to
		the range	normal range
Err07	Under veltage	3. bus voltage is abnormal	3-6. ask for technical
EIIU/	Under voltage	4. rectifier bridge and buffer	support
		resistor abnormal	
		5. drive circuit board error	
		6. control circuit board error	
		1. load is too large and motor	1. decrease the load and
		blocked	check the motor and
Err08	VFD over-load	2. VFD power is too small	mechanical condition
			2. choose larger power
			VFD
		1. check motor protection	1. set the suitable motor
		parameters	protection parameter
		2. load is too large or motor	2. decrease the load and
Err09	Motor over-load	blocked	check the motor and
		3. VFD power is too small	mechanical condition
			3. choose larger power
			VFD
		1. 3-phase input power supply is	1. check the outside
		abnormal	circuit
		2. drive circuit board error	2-4. ask for technical
Err10	Input lack of phase	3. anti-thunder circuit board	support
		error	
		4. main control circuit board	
		error	
	Output lack of	1. the wire from VFD to motor	1. check the outside fault
Err11	phase	has problem	2.check the motor 3-phase

r	1		
		 VFD 3-phase output is unbalanced when motor running Drive circuit board error module error 	resistor 3-4. ask for technical support
Err12	heatsink/module overheat	 environment temperature is too high air flue blockage fan damaged thermistor damaged the inverter module damaged 	 decrease the environment temperature clear the air flue change new fan change new thermistor change new inverter module
Err13	Buffer resistor overload		
Err14	Contactor fault	 drive circuit board and power supply error contactor error 	 change new drive circuit board or power supply circuit board change contactor
Err15	External fault	 input external fault signal from X terminal input external fault signal from virtual DO function 	1. reset run 2. reset run
Err16	User-defined fault 1	 input user-defined fault 1 signal from X terminal input user-defined fault 1 signal via virtual IO function 	1. reset run 2. reset run
Err17	User-defined fault 2	 input user-defined fault 2 signal from X terminal input user-defined fault 2 signal via virtual IO function 	1. reset run 2. reset run
Err18	Current detection fault	 HALL component error drive circuit board error 	 change new HALL change new drive circuit board
Err19	Motor short circuit	Motor short circuit to ground	Change cable or motor

	to ground		
Err20	Wave-to-wave current limit failure	 load too large or motor blocked VFD power too small 	 decrease the load and check the mechanical condition choose larger power VFD
Err21	Motor tuning fault	 motor parameter not set as label parameter tuning overtime 	 set correct motor paramter as the label check the cable from VFD to motor
Err22	Communication (overtime) fault	 upper device work abnormal communication cable error parameter group PC setting is not correct 	 check the upper device wiring check the communication wiring set correct communication parameter
Err23	EEPORM read write error	EEPROM chip damaged	Change new main control circuit board
Err24	Off load	VFD run current less than P5-29	If the load is off or set correct parameters of P5-29, P5-30
Err25	Run time arrival	cumulative run time arrived setting value	Clear the records through parameter initialization function
Err26	Switch motor when running	Change the motor selection via terminal when VFD is running	Please switch the motor after VFD stop
Err27	Power on time arrival	Cumulative power on time arrived setting value	Clear the records through parameter initialization function
Err28	PID feedback missing when running	PID feedback less than P7-27	Check PID feedback signal or set suitable parameter of P7-27

5-2. Check the fault records

The inverter records the last 6 times fault code and the running parameter of last fault. Checking these information can help to solve the problem. The fault records are stored in P6.

5-3. Fault reset

Once the fault occurs, select one of the following operations to restart the inverter:

(1) When fault code displayed in the operation panel, press key after you confirm the inverter can be reset.

- (2) After setting one terminal among X1~X6 as external RESET input (P4.00~P4.04=7), connect it with COM terminal and then disconnect.
- (3) Cut off the power supply

(1) Please make sure you know the reason of the fault and get rid of it before resetting, otherwise the inverter may be damaged permanently.

(2) If the inverter can not be reset or fault reoccurred after resetting, please check the reason as the inverter may be damaged by resetting continuously.

(3) Delay 5 minutes to reset when overload and overheat protection are enabled.

6 Maintenance

6-1. Maintenance

Environment effections such as ambient temperature, humidity, fog, internal component aging and other factors will give rise to the occurrence of potential faults. Therefore, it is necessary to daily check and routine maintain the inverters.

6-1-1. Routine maintenance

Please confirm the following items when start the inverter.

(1) If there is abnormal noise and vibration with the motor.

- (2) If the inverter and motor heat unusually.
- (3) If the environment temperature is too high.
- (4) If the value of load amperometer is as usual.
- (5) If the fan of inverter can operate normally.

6-2. Periodical care and maintenance

6-2-1.Periodical care

Before checking and maintaining the inverter, please make sure that the inverter is power off, monitor has no display content and the indication lamp of main circuit power is off. The checking contents are shown in Tabel 6-1.

Items	Contents	Countermeasures		
The screw of main circuit terminals, control circuit terminals	If the screws are loose	Tighten the screws with screw drivers		
Heatsink	If there is dust	Use dry compressed air with 4~6kgcm ² pressure		
PCB board	If there is dust	Use dry compressed air with 4~6kgcm ² pressure		
Cooling fan	There is abnormal noise, vibration, or if it has run for more than 20 000 hours.	Change cooling fan		

 Table 6-1 periodical maintenance

Power component	If there is dust	Use dry compressed air with 4~6kgcm ² pressure		
Aluminium electrolytic capacitor	If it has changed color, particular smell or bubble	Change aluminium electrolytic capacitor		

6-2-2. Periodical maintenance

To make the inverter work normally for long time, periodical care and maintenance for inverter's internal electronic component should be done. The electronic component's lifetime depends on their application environment and preservation. The reference lifetime are shown in table 6-2:

 Table 6-2 Lifetime of inverter components

Component	Life		
Cooling fan	2~3 year		
Electrolytic capacitors	4~5 year		
Print circuit board	5~8 year		
Fuse	10 year		

The usage conditions of the above components are shown below:

- (1) Environmental temperature: 30°C in average.
- (2) Load coefficient: less than 80%.
- (3) Running time : less than 12 hours per day.

6-3. Warranty of the inverter

Xinje Company will offer warranty service in the case of the following situations:

(1) The warranty range only points to the inverter;

(2) We will take the responsibility of 15 months defects liability period for any faults or damages under the normal operation conditions. After15 months, maintenance will be charged;

(3) Even within 15 months, maintenance would be charged under the following conditions:

Inverter is damaged due to incorrect operation, which are not in compliance with "User Manual";

Inverter is damaged due to fire, flood, and abnormal voltage and so on; Inverter is damaged due to wiring fault.

Inverter is damaged due to the improper use of drive functions;

(4) Service fee will be charged according to the actual costs. If there are any maintenance contracts, the contract has priority.

7 Communication protocol

7-1. Overview of communication protocol

The inverters have RS485 communication port and adopt MODBUS communication protocol. Therefore, the inverter can be set as a slave to communicate with the marter (such as PLC and PC) which has the same communicatin port and protocol; also, user can use a inverter as the master to communicate with several inverters produced by our company via RS485 port to make multi-machine linkage. Besides, you can connect the RS485 port to remote keyboard.

This inverter support MODBUS-RTU, the following is the particular instruction for the inverter's communication protocol.

7-2. Communication protocol

7-2-1. Communication networking mode

Inverter as a slave

Fig.7-1 Networking diagram of inverter

Multi-device network

Fig 7-2 Networking diagram of multi-device

7-2-2. Communication protocol modes

The inverter can be master and slave in RS485 network. If it is master, it can control other inverters made by our company to realize multi-machine linkage. If it is slave, PC or PLC (master) can control it. The concrete communication modes are shown below:

(1) The inverter is slave, master-slave point-to-point mode. The slave devices will not response when master sends requires by broadcast address.

(2) The inverter is master. The slave devices will not response when master sends requires by broadcast address.

(3) Users can set the inverter address, baud rate and data format via the keypad or serial port.

(4) The slave reports the current fault information in the latest response frame.

7-2-3. Communication port

RS485 port is asynchronous serial, half-duplex transmission. Default data format: 1 start bit, 8 data bits, 1 stop bit.

Default baud rate 19200bps, the communication parameters please refer to P3.09~P3.12.

7-3.Modbus-RTU communication protocol

7-3-1. Character structure

(1-8-2 format, None)

Start bit	0	1	2	3	4	5	6	7	Stop bit	Stop bit
--------------	---	---	---	---	---	---	---	---	-------------	-------------

(1-8-1 format , Odd)

Start bit	0	1	2	3	4	5	6	7	Odd	Stop bit
--------------	---	---	---	---	---	---	---	---	-----	-------------

(1-8-1 format, Even)

Start bit	0	1	2	3	4	5	6	7	Even	Stop bit
--------------	---	---	---	---	---	---	---	---	------	-------------

(1-8-1 format, None)

Start bit 0 1 2 3 4 5 6 7	Start bit) 1	0 1 2	3	4	5	6	7	Stop bit
--	--------------	-----	-------	---	---	---	---	---	-------------

7-3-2. Communication structure

Read: 0x03

Write: 0x06

Write RAM: 0x07 (note: not write in eeprom to save its using life)

Circuit test: 0x08, to test whether one station is connected to the RS485 bus. Send back the data receiving from main station.

Address:

Function code:

High 8-bits is group no., low 8-bits is function code

Read:

P0 ~ PF: 0x00xx ~ 0x0Fxx
A0 ~ AF: 0xA0xx ~ 0xAFxx
B0 ~ BF: 0xB0xx ~ 0xBFxx
C0 ~ CF: 0xC0xx ~ 0xCFxx
U0 ~ UF: 0x80xx ~ 0x8Fxx

Write:

P0 ~ PF: 0x00 ~ 0x0F
$A0 \sim AF: 0xA0 \sim 0xAF$
B0 ~ BF: 0xB0 ~ 0xBF
$C0 \sim CF: 0xC0 \sim 0xCF$
U0 not support write

Write ram:

P0 ~ PF: 0x00 ~ 0x0F
A0 ~ AF: $0xA0 ~ 0xAF$
B0 ~ BF: 0xB0 ~ 0xBF
$C0 \sim CF: 0xC0 \sim 0xCF$
U0 not support write

Non-function code:

Write only:

Communication setting value:

1000H:

Control command:

94

2000H:

	1: forward run
	2: reverse run
	3: forward jog
	4: reverse jog
	5: decelerating stop
	6: free stop
	7: fault reset
Digital output terminal control: 2001H:	
	BIT0: DO output control
	BIT1: RELAY1 output control
Analog value AO1 output:	
2002H:	
	0~7FFF means 0%~100%
Read only:	
Read state:	
3000H:	
	1: forward run
	2: reverse run
	3: stop
Read VFD fault:	
9000H:	
Fault information:	
	0000H: no
	0001H: accelerating over-current
	0002H: decelerating over-current
	0003H: constant speed over-current
	0004H: accelerating over-voltage
	0005H: decelerating over-voltage

0006H: constant speed over-voltage

0007H: under-voltage fault 0008H: VFD over-load 0009H· motor over-load 000AH: input lack of phase 000BH: output lack of phase 000CH: heat sink 000DH: buffer resistor overload 000EH: contactor fault 000FH: external fault 0010H: user-defined fault 1 0011H: user-defined fault 2 0012H: current detection fault 0013H: motor short circuit to ground fault 0014H: wave-to-wave current limit fault 0015H: motor tuning fault 0016H: communication(overtime) fault 0017H: EEPORM read write fault 0018H: EEPORM read write fault 0019H: run time arrival 001AH: switch motor when running 001BH: power on time arrival 001CH: PID feedback missing when running

If there is user password:

It needs to read the password in 30 seconds after writing in the correct password, otherwise it needs to write in the correct password again.

Appendix A Accessories

Appendix A-1. brake resistor

0.75~15KW VFD has internal brake unit. Please choose brake unit and resistor as table 1-1. 18.5KW and up VFD needs to connect brake unit. The brake resistor connection diagram please refer to fig1-1.

Fig 1-1 wiring diagram of VFD and brake unit

Brake unit wiring diagram:

	Brake	unit	Brake resistor			
Power(KW)	Specification	Quantity	Equivalent brake	e Equivalent brake		
			resistance (Ω)	power (W)		
0.75	Built-in	1	≥300	150		
1.5	Built-in	1	≥220	150		
2.2	Built-in	1	≥200	250		
3.7	Built-in	1	≥130	300		
5.5	Built-in	1	≥90	400		
7.5	Built-in	1	≥65	500		
11.0	Built-in	1	≥43	800		
15.0	Built-in	1	≥32	1000		

Table 1-1 brake resistor

XINJE WECHAT ID

WUXI XINJE ELECTRIC CO., LTD.

4th Floor Building 7,Orignality Industry park, Liyuan Development Zone, Wuxi City, Jiangsu Province 214072 Tel: (510) 85134136 Fax: (510) 85111290 www.xinje.com