><INNE

MA series module

Application Manual

Xinje Electronic Co., Ltd

Catalog

1. Communicate with integrated controller 3
1.1 Requirement and preparation 4
1.2 Communication setting 5
1.3 PLC program 5
1.3.1 Design concept 5
1.3.2 MA-8X8Y 6
1.3.3 MA-4AD2DA 6
1.3.4 MA-6PT-P 8
1.3.5 Control program 9
1.4 HMI program 15
1.4.1 Build a new project 15
1.4.2 Screen 1 MA-8X8Y 16
1.4.3 Screen 2 MA-4AD2DA 18
1.4.4 Screen 3 MA-6PT-P 23
1.5 Hardware connection 27
1.5.1 Download connection 27
1.5.2 Download PLC program 28
1.5.3 Download the screen 30
1.5.4 Communication 31
1.5.5 Indication LED 32
2. Communicate HMI with multi-modules 33
2.1 Preparation and requirements 33
2.2 Communication setting 34
2.3 HMI screen 35
2.3.1 Build a new TP project 35
2.3.2 Screen 1 MA-8X8Y 36
2.3.3 Screen 2 MA-4AD2DA 38

1. Communicate with integrated controller

MA series modules are new products developed by Xinje with analog control function. MA module has strong communication ability. It supports Modbus-RTU protocol, can communicate with any devices support of Modbus protocol such as PLC, HMI, and integrated controller. MA series have various types of products:

Type	Function
MA-8X8YR	8 channels digital input, 8 channels digital output
MA-16X	16 channels digital input
MA-16YR/T	16 channels digital output
MA-4DA	4 channels analog output
MA-4AD	4 channels analog input
MA-8AD-A/V	8 channels analog input
MA-4AD2DA	4 channels analog input, 2 channels analog output
MA-6TC-P	6 channels type K thermocouple temperature control
MA-6PT-P	6 channels PT100 temperature control

MA modules have strong extension capability, it can connect 16 different types of MA modules with PLC and HMI.

This chapter will tell you how to communicate 3 MA modules with Xinje integrated controller. The communication figure is shown as below:

About the using method of each module, please refer to MA series module user manual. This application manual is aimed to introduce how to communicate MA with other devices.

1.1 Requirement and preparation

1. Purpose

To command the skill of communicate several MA modules with integrated controller.
2. Devices
(1) XMP2-32R-E 1 piece
(2) MA-8X8Y, MA-4AD2DA, MA-6PT-P 1 piece
(3) RS-485 cable 3 pieces, TP cable 1 pieces, XC cable 1 piece, 24 V power supply wire 3 pieces, 220 V power supply wire 1 piece
(4) Computer with Touchwin and XCPpro software inside

3. Communication requirements

Integrated controller XMP2-32R-E communicates with 3 MA modules which are MA-8X8Y, MA-4AD2DA and MA-6PT-P.

Detailed requirements:
(1) Real-time read the I/O signal of MA-8X8Y, and display them on screen;
(2) Real-time read the signal of MA-4AD2DA channel 0 , control the PID signal of this channel, set the target value, PID parameters; write data into MA-4AD2DA 2 channels.
(3) Control the temperature of MA-6PT-P channel 0, PID control and self-study PID parameters, set target temperature on the screen, display the temperature as tendency chart.
4. Reference data
(1) XMP2-32 integrated controller manual
(2) XC series edit tool XCPpro manual
(3) XC series PLC manual
(4) MA series module manual
(5) TP series touch screen manual
5. Process

1.2 Communication setting

Because the use of Modbus-RTU communication protocol, each device should have Modbus station number. The 3 MA modules station No. are 1~3.
3 MA modules are based on Modbus-RTU protocol, they are slave stations in the Modbus network, they can not visit the master station but only can response the master station. The master station XMP2-32R-E can visit all the slave stations.

Make sure the communication is successful, it should set the correct communication parameters including baud rate and station No. The baud rate of master device should be the same as slave devices. To make it easy, we set all devices' baud rate to be 19200 bps; the station No. is the ID for master to distinguish each slave station.
Don't have to set the communication parameters of XMP2-32R-E, use the default parameters.

3 MA modules baud rate setting:

Baud rate	DIP switch	
19200bps	$1 \mid 2$	
	\square	0 ON
		OFF

The station No. setting:

1.3 PLC program

1.3.1 Design concept

According to the control requirements, the MA modules should communicate with PLC, PLC should communicate with HMI. XMP2-32R-E should read and write the data of 3 MA modules, we can use process instruction to realize the function. 3 MA modules need 3 processes. Next, we will analyze the program method of each module.

1.3.2 MA-8X8Y

XMP2-32R-E should read the I/O signal of MA-8X8Y, it can use Modbus instruction "COLR—read coil" to read the data of $\mathrm{X} 0 \sim \mathrm{X} 7$ and $\mathrm{Y} 0 \sim \mathrm{Y} 7$ in process S 0 .

The coil and register used in the program:

Type	Address type	Address	Function
XMP2-32R-E	Auxiliary coil	M100~M107	Save the value of X0~X7 and display on the screen
XMP2-32R-E	Auxiliary coil	M110~M117	Save the value of Y0~Y7 and display on the screen
MA-8X8Y	Bit	K0~K7	X0~X7 channel input signal
MA-8X8Y	Bit	K128~K135	Y0~Y7 channel output signal

1.3.3 MA-4AD2DA

As the requirements, AD is used to write target value into MA-4AD2DA channel 0 , read PID output, control PID enable bit manually, modify the PID parameters any time. DA is used to control the analog output. All the contents will be completed in process S 1 . It will use these instructions: REGW---write one register, MRGW---write many registers, COLW---write one coil, COLR----read coil.

The registers and coils used in the program:

Product type	Address type	Address	Function
XMP2-32R-E	Auxiliary coil	M200	Control the PID enable bit of the module
XMP2-32R-E	Register	D200	Write the target value into AD channel 0
XMP2-32R-E	Register	D201	Read the PID output value of AD channel 0
XMP2-32R-E	Register	D210~D213	Write P, I, D, Diff into the module
XMP2-32R-E	Register	D214	Write PID control period value
XMP2-32R-E	Register	D220	Write the value into DA channel 0
XMP2-32R-E	Register	D221	Write the value into DA channel 1
MA-4AD2DA	Bit	K160	PID enable bit address
MA-4AD2DA	Register	K8	AD channel 0 PID output address
MA-4AD2DA	Register	K130	AD channel 0 target value address

MA-4AD2DA	Register	K134~K137	AD channel 0 P, I, D, Diff parameters address
MA-4AD2DA	Register	K150	PID control period address
MA-4AD2DA	Register	K128	DA channel 0 address
MA-4AD2DA	Register	K129	DA channel 1 address

1.3.4 MA-6PT-P

As the requirements, write the target temperature into module channel 0 , read the PID output value and self-study enable bit, control the heating or cooling mode manually, modify the PID parameters anytime. It will use these instructions: REGR, REGW, MRGW, COLW. Besides, in order to monitor the temperature, it can use real-time tendency chart to show the changing of temperature, this function will be introduced in HMI screen part.

The registers and coils used in the program:

Product type	Address type	Address	Function
XMP2-32R-E	Auxiliary coil	M300	Control the PID enable bit
XMP2-32R-E	Auxiliary coil	M301	Control the self-study enable bit
XMP2-32R-E	Auxiliary coil	M302	Control the heating/cooling mode
XMP2-32R-E	Register	D300	target value of module channel 0
XMP2-32R-E	Register	D301	Read PID output value
XMP2-32R-E	Register	D310~D313	P, I, D, Diff parameters
XMP2-32R-E	Register	D314	PID control period
MA-6PT-P	Bit	K128	PID enable bit address
MA-6PT-P	Bit	K136	Self-study enable bit address
MA-6PT-P	Bit	K144	Heating/cooling mode address
MA-6PT-P	Register	K128	Target temperature address of channel 0
MA-6PT-P	Register	K6	PID output address of channel 0
MA-6PT-P	Register	K134~K137	P, I, D, Diff parameters address
MA-6PT-P	Register	K158	PID control period address

1.3.5 Control program

The control program will include three processes S0, S1, S2. Three processes are responsible for communicate with 3 MA modules.

Time delay is added in the beginning of each process, in order to prevent from communication error and fall into endless loop. When the communication is successful or the time delay is over, the program will go to next process. Time delay should not be too long, or the communication time will be long and delayed.
Please note that, there are some parameters in MA modules which are set as default value, such as I/O mode (voltage/ current), measure range. If user wants to modify these parameters, it is needed to add write instruction.
At last, make sure all the slave station No. are right when writing the instructions.
The whole program is as below:

1.4 HMI program

XMP2-32R-E is integrated controller with HMI and PLC in one device. After completing the PLC program, the next is to edit the HMI screen to monitor the data of the modules. HMI communicates with PLC directly, PLC is responsible to receive and process the data.

1.4.1 Build a new project

XMP2-32R-E is integrated with HMI and PLC, so the HMI screen will be edited in Touchwin software.

1. Open Touchwin software, build a new project, show below window:

2. PLC type select Thinget $X C$ series

3. Download port device select unuse:

4. Click next until finish.

1.4.2 Screen 1 MA-8X8Y

First, name screen 1 to be MA-8X8Y:

According to the requirements, PLC reads the module data, and HMI displays the data on the screen. Put 16 lamps and 16 texts on the screen. Texts content are: X0~X7, Y0~Y7. The lamps addresses are: M100~M107, M110~M117. Besides, it can add some suggestive words on the screen, please see the following picture:

MA-8X8Y

Take X0 lamp as an example, set the station No. to be 1, address is M100:

In order to go to screen 2, put a screen jump button on the screen:

Set the screen ID to 2, do not need to set password, so the mode is \log on.

In "button" tab, set the enter code to be F2, content to be screen 2. As XMP2-32R-E has panel buttons, the jump screen function can use the F2 button on the panel.

Screen Jump

The finished screen is as below:

1.4.3 Screen 2 MA-4AD2DA

Similar to screen 1, build a new screen 2 named "MA-4AD2DA".
Screen 2 includes the control and display of AD and DA . AD needs 6 data input buttons, 1 lamp. DA needs 2 data input buttons.
Please see below picture:

AD

target yalue 00000
PD control output value

D. 00000

Diff
 00000

control period

00000

DA
channel 0 output value 00000 : . . . channel 11 output value 00000

AD: data input button addresses are: D200 (target value), D210 (P), D211(I), D212 (D), D213 (Diff), D214 (control period). Take target value for example, set the address to be D200, station No. 1.

Data display button address is D201 (PID control output value), set as below:

Lamp button is used to display the PID enable bit of channel 0, set the address to be M200, station No.1:

Button With Lamp

The operation of lamp button set to be reverse, other choices set as default:

DA: the addresses of data input button are: D220 (channel 0 output value), D221 (channel 1 output value). Take channel 0 for example: set the address to be D220, station No.1, other choices set as default:

At last, put a screen jump button on the screen, jump to screen 3:

Screen Jump

```
Operate |utton| Color |Position
Screen ID |3|
    Mode
        C Log On
        CValidate
```

Use panel button F3 to realize the jump function.

Screen Jump

Operate Button |Color |Position |

Key Type C Touch			\cdots	「 Password		
			level	Level1	\cdots	
- Enter	Code	F3				

The final screen is as below:

AD

target value 00000
PD control
output value

00000 : PD start/stop

$\dot{P} 00000$
I: 00000
D. 00000

Diff
00000
control period
00000

DA
chanriel 0 output valiue
00000 chantinel 11 output value

1.4.4 Screen 3 MA-6PT-P

Build a new screen, named as " MA-6PT-P".
According to the requirements, it needs 3 lamp buttons, 6 data input buttons, 1 data display button and 1 real time tendency chart. Data input button is used to input target value and PID parameters, data display is used to display PID control result, button is used to control the ON/OFF. Real time tendency chart can reflect the changing of temperature.

The lamp button addresses are: M300 (PID control), M301 (self-study), M302 (Heating/cooling). Take PID control lamp button for example, set the address to be M300, station No.1, button operation is reverse, other choices set as default:

Button With Lamp

Button With Lamp


```
Twinkle Speed
C Slow C Fast
```

- Password

Level
Level1

Data input button addresses are: D300 (target temperature), D310 (P), D311 (I), D312 (D), D313 (Diff), D314 (control period). Take target temperature as an example, set the address to be D300, station No.1, other choices set as default:

Digital Input

Data
Data Whord $\quad-$

Real time tendency chart is used to display the temperature changing, the address is D301:

Real time Trend
Trend Map |Color | Position

Click Modify, set the address to be D301, station NO. 1

Trend Map

Trend Hap

Switch to Pick, this item is used to display the temperature changing after PID control started.

At last, put a screen jump button on the screen in order to jump to screen 1.

Screen Jump

```
Operate |Button \({ }^{\text {Color }}\) | Position
Screen ID 11
    Mode
        (c) Log On
        CValidate
```


Screen Jump

「 Hide Button

The final Screen 3 is shown as below:

By now, the screen design has been finished. The processing method for multi-module communication is similar to single module. Within this example, the module communicates with PLC directly, touch screen only gets information and controls the action of module by reading PLC. Thus, the station number of buttons and elements mentioned above are all PLC station numbers. It should be noticed that if touch screen communicates with module directly, the station number is different for each module.
Besides, please note that whatever the registers are from MA-4AD2DA or MA-6PT-P, the register value is an intermediate quantity. For example, when register value is 800 when reading the temperature, it means the actual temperature is $80^{\circ} \mathrm{C}$ (precision is $0.1^{\circ} \mathrm{C}$).

1.5 Hardware connection

1.5.1 Download connection

After completing the design of PLC and HMI programs, download these programs into integrated controller XMP2-32R-E.
The interface and I/O points of XMP2-32R-E are shown as below:

The connection between download port and serial port of PC

NOTICE:

(1) The power supply of XMP2-32R-E is AC 220 V .
(2) The power supply of MA module is DC 24 V (connect with 24 V DC output on XMP2-32R-E).
(3) Whatever downloading PLC or HMI program, it should proceed via download port.
(4) We recommend to use the special PLC and HMI cables made by Xinje. You also can make the cable by yourself refer to the diagram shown above. If the PC doesn't has serial port, you can use USB-RS232 converter.

1.5.2 Download PLC program

1. Online

Before downloading the program into PLC, make sure XMP2-32R-E is connected to PC successfully. Click ${ }^{(0)}$ to set serial port, please see the picture shown below:

Option	Window Help
Conm Mode Settings	
Ethernet Module Settings	
C Function Settings	
Software Serial Port Config	
	Default Unlock Psw Config
Ladder Color Config	
Instruction Tool Help	

In "Config software comport" window, select the correct serial port, baud rate, parity or click "automatic detection" to auto-check these parameters.
When you see the red words " Connect to PLC succeeded ", it means PLC is connected with PC successfully. Click "OK" which is shown as below:

If the connection is failed, "Config software comport" window will show "communication error". At this time, please check the PLC port, PC serial port and communication cable.

Config Software ComPort

2. Download the program

After the connection is successful, click icon to upload the PLC program. Click 回 to save the program.

Uploading Program.

Upload Succeeded. .

Cancel

Click icon to download the program. If PLC is running, it will show the following message:

Click "OK" to stop the PLC running and download the program. It will show the downloading progress window:

Downloading Program.
 Used Percent:0.41\%

Cancel

When download process has been finished, click icon to run the PLC.

1.5.3 Download the screen

Connect the XMP2-32R-E download port with PC serial port, turn on the 220 V power, click icon of Touchwin software to download the data. If it shows "connection timeout, please check the cable", you have to download the program again.

Download

Downloading... (800/6e00)

Cancel

After finished the data transfer, it will show the following window. It means the transfer is successful.

NOTICE During the downloading process, make sure the XMP2-32R-E controller won't power off.

1.5.4 Communication

XMP2-32R-E has two kinds of interface which are RS232 and RS485. However these two interfaces can not be used at the same time. In this example, we use RS485 (point A and B) interface to connect MA module.

1.5.5 Indication LED

Connect all the devices according to the above drawing, make sure MA module and XMP2-32R-E are all connected to power supply. After the baud rate and station number of MA modules have been configured, the module power LED is lighted up and communication LED is ON/OFF alternated which means the communicating is normal.(LED lighting up means communicating, LED twinkling means communicating error).
If X0 of MA-8X8Y is turned on, the related lamp on screen 1 will light up. However, this process will have some delay time caused by communication delay, scan period and reading PLC by HMI. For some cases which need high effectiveness, it can communicate HMI with module directly.

2. Communicate HMI with multi-modules

In the first chapter, we have introduced how to communicate integrated controller with three MA modules. In fact, it is still the communication between PLC and MA module. In this chapter, we will introduce how to communicate HMI with MA module.
There are many advantages to use HMI to communicate with MA modules It doesn't need complicated program to deal with individual communication process. You also don't worry about the communication will get into endless loop and has error. You only need to use simple elements of HMI such as buttons, data input buttons to communicate with modules.

In a word, using HMI to communicate with modules makes the operation easier and improves the effectiveness.
We will use the same requirements to realize the communication between MA modules and HMI. Please see the following connection drawing:

2.1 Preparation and requirements

1. Purpose

To command the method of communicate multi-MA modules with HMI.
2. Device
(1) TP760-T 1 unit
(2) MA-8X8Y, MA-4AD2DA, MA-6PT-P 1 unit
(3) RS485 cables, DVP cables, wires
(4) PC installed with Touchwin software

3. Communication requirements

TP760-T communicates with 3 three MA modules:
(1) real time read the I/O signal of MA-8X8Y, then display them on the screen
(2) real time read the value of MA-4AD2DA channel 0 , control the start and stop of PID, set the target value and PID parameters; write value into MA-4AD2DA DA channel 0 and 1.
(3) PID control and auto-tune the temperature of MA-6PT-P channel 0, display the target/current temperature on the screen, modify the PID parameters. Display the temperature in real time tendency chart.
4. Reference data
(1) MA series module manual
(2) TP series HMI manual

5. Process

2.2 Communication setting

The communication is based on MODBUS protocol, set the station number to $1 \sim 3$ for three MA modules.
These MA modules are slave stations which can not visit the master station TP760-T. However, TP760-T can visit all the modules.

Next, set the correct baud rate and station number of each device. The baud rate of master station should be the same as the slave station. We set as the default baud rate of TP760-T 19200bps. Three MA modules station numbers are 1,2,3

MA module setting:

Baud rate	DIP switch
19200bps	$1 \quad 2$
	\square
	ON

2.3 HMI screen

The program is simple for communicating between HMI and MA modules. Next we will introduce the method of making HMI project.

2.3.1 Build a new TP project

Open Touchwin software, build a new project:

2.3.2 Screen 1 MA-8X8Y

First, change the name of screen 1 to MA-8X8Y.

According to the requirements, display the MA-8X8Y data on the screen. Put 16 lamp buttons on the screen.

Set the lamp buttons addressed to 0x0~0x7 (X0~X7) and 0x128~0x135 (Y0~Y7).

Take X0 for example. Set the station number to 1 , address to $0 x 0$:

Button With Lamp

Set other I/O points at the same method.
ATTENTION: 0x is Modbus address of MA module. HMI reads data from MA Modbus address directly but don't need PLC. This is the advantage of TP series HMI.
Put a screen jump button on the screen, set the jump screen ID to screen 2. Change the button content to screen 2.

Screen Jump

The final screen 1 is shown as below:

2.3.3 Screen 2 MA-4AD2DA

Set the name of screen 2 to MA-4AD2DA.
Screen 2 includes AD and DA. AD needs 6 data inputs, 1 data display, 1 lamp button. DA needs 2 data inputs.

AD

write in channel 0

write in channel 1 \square

The Modbus address of MA module is shown as below:

Content	Modbus address
Target value	4×130
PID control value	4×8
P	4×134
I	4×135
D	4×136
Diff	4×137
Control period	4×150
PID stop/start	0×160
Write data in DA channel 0	4×128
Write data in DA channel 1	4×129

Take "target value" data input button for example. Set the address to 0×130, station number 2 .

Data display button is used to display current PID control value, set the address to 4x8, station number 2:

Display Digital

Object \mid Display \mid Font | Color | Position

Lamp button is used to control and display the PID enable bit of channel 0 , set the address to 0×160, station number 2 :

Button With Lamp

The operation of lamp button set to "reverse".

Button With Lamp

```
Object General Aspect| Color | Position
```


Twinkle Status
- Stop \subset ON $\quad \subset$ OFF
Twinkle Speed
(C Slow C Fast
Password
Level
Level1
$-$

In DA part, take channel 0 for example. Set the data input button address to 4×128, station number 2 :

Digital Input

```
Object:Display| Input | Font | Color |Position|
```


Data

```
Data Wrord -
```

At last, use a jump screen to jump to screen 3 .

Screen Jump

```
Operate |Button| Color |Position|
Screen II
\(\square\)
    Mode
        C Log On
        CValidate
```

Change the jump screen button content to "screen 3":

The final screen is show as below:

2.3.4 Screen 3 MA-6PT-P

Build a new screen, change the screen name to MA-6PT-P.
According to the requirement, we need 3 lamp buttons, 6 data input buttons, 1 data display button and 1 real time trend map. Data input button is used to set target value, PID parameters, etc. Data display button is used to display PID control result, lamp button is used to control the start and stop of each process. Real time trend map can reflect the temperature variable trend.

Lamp button Modbus addresses are 0x128(PID control), 0x136(self-study), 0x144(Heating/Cooling). Take PID control for example, set Modbus address to 0x128, station number 3, button operate reverse.

Button With Lamp

Object| General|Aspect|Color | Position

Button With Lamp

Target value is used to input target temperature, the Modbus address is 4×128, station number is 3 .

Digital Input

Object Display \mid Input \mid Font \mid Color \mid Position

Data
Data Frord

Other data input button Modbus addresses are $4 \times 134(\mathrm{P}), 4 \times 135(\mathrm{I}), 4 \times 136(\mathrm{D}), 4 \times 137$ (Diff), 4×158 (Control period).

Data display button address is 4×6 (PID output result), station number 3 .

Display Digital

Object Display|Font |Color | Position

Real time trend map is used to display the current temperature, the address is $4 x 0$, station number 3. Click Modify icon to change the address and station number.

Real time Trend

Trend Map |Color | Position

Trend Hap

Trend Hap

Switch to trend map, modify the temperature range to be $-1000 \sim 3500$, which means the temperature range is $-100{ }^{\circ} \mathrm{C} \sim 350{ }^{\circ} \mathrm{C}$ as the precision is $0.1^{\circ} \mathrm{C}$.

At last, put a screen jump button on the screen in order to jump to screen 1.

The final Screen 3 is shown as below:

XINJE

www.xinje.com

Xinje Electronic Co., Ltd
4th Floor Building 7,Orignality Industry
park, Liyuan Development Zone, Wuxi
City, Jiangsu Province 214072
Tel: (510)85134136
Fax: (510)85111290

