Industrial automation trust partner



# **SERVO SYSTEM**

DS5 Servo Driver/MS Servo Motor




4th Floor Building 7,Originality Industry park, Wuxi, China Tel: (510) 85134136 Fax: (510) 85111290 www.xinje.com



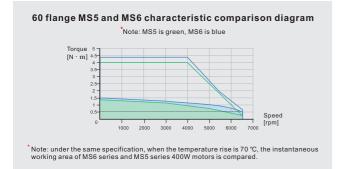


# **EM** Servo Motor



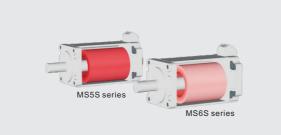
#### Product lineup

# Servo Motor MS5 / MS6


- · Smaller size
- · More accurate positioning
- · Faster speed and greater torque






#### Higher torque output MS6 series

At present, the speed of MS6 series 400W motor can exceed to 6500rpm, and the maximum speed still keeps 60% of the rated output.



#### Lower temperature rise MS6 series

Ms6 series motors can reduce the reactive power loss and the winding temperature rise by 15 ~ 20 °C through more reasonable electromagnetic optimization design (compared with MS5 series motors).

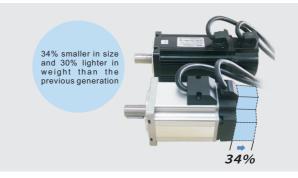


#### Higher protection level MS6 series

Compared with MS5 series, MS6 series motor further improves the protection level, up to IP66.



#### **Optional for special occasions**


Small power can be equipped with S02 small aviation plug interface.
Wet, greasy environment is more durable.



#### Lighter motor

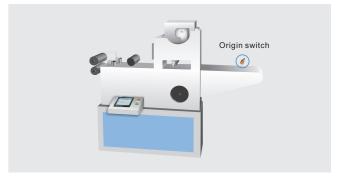
The motor is 34% shorter than the previous generation.
With mobile mechanism, the quality is lighter.

\*Take MS5S-60STE-CS01330B-S01 as an example



#### **Encoder resolution**

- $\cdot$  17/23 bits communication type encoder.
- Achieve higher precision position control and stable operation at low speed.
- $\cdot$  The magnetic encoder is oil resistant and vibration resistant.




#### Excellent product performance



#### No origin switch

Absolute value encoder, cancel hardware switch signal, reduce the occurrence of fault.



#### Flexible configuration to meet different needs

· Low inertia, medium inertia and high inertia motors for choice.

 $\cdot$  Power loss brake, oil seal are optional.



## **DS5 Series Driver**

- Precise synchronization
- · High-speed response
- · Fast adjustment, Easy to use



#### Smaller size, saving installation space

· 35% thinner than the previous generation  $\cdot$  Save installation space

\*Note: take DS5E-20P4-PTA as an example.

#### High speed response

· The rigid gain adjustment mode of servo system is

- self-tuning mode, without complicated adjustment process, which greatly saves debugging time.
- By further gain adjustment, the positioning completion time can be reduced to 0~10ms.

## shorter positioning time

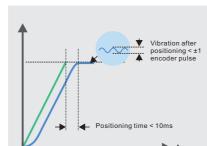
Quick adjustment,

- · Load inertia estimation, search for the optimal gain, positioning time within 20ms.
- · Further gain tuning can shorten the positioning completion time to 0~10ms.
- · Driver panel offline adjustment.
- · 63 rigidity grade covers.

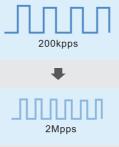
## High speed pulse input

#### · DS5F supports 2Mpps long-line receiving.

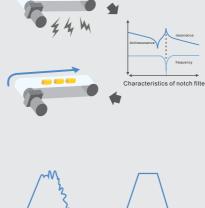
Ç


All series of driver supports 200kpps (collector input), DS5F/DS5K series driver supports 500kpps (differential input).

 $\cdot$  The filter set frequency is 50 ~ 5000Hz, and the depth can be adjusted.


· Optimize friction compensation and disturbance observation algorithm.

suppression











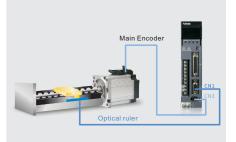





#### Excellent product performance



#### Active/manual vibration


· Support 1 channel active vibration suppression.

Equipped with 5 notch filters, combined with the vibration mechanical characteristics analysis function, improve the vibration suppression ability.

Using vibration suppression

#### Full closed loop input

· Reduce the mechanical disturbance, determine the location of the mechanical load terminal, and ensure the positioning accuracy.



#### Integrated driving and control

- · Built in electronic cam.
- The pulse and RS485 communication wiring are omitted, and the wiring is simple.
- · Save installation space of electrical cabinet.





## EtherCAT bus Reduce networking cost and make system construction more flexible



#### Synchronous clock

- · Through the precise adjustment of the EtherCAT distributed clock, 300 nodes 120 m distance, 15 ns synchronization error and ±20ns synchronization jitter can be realized.
- · Transmission rate: 2×100Mbps (full duplex)

#### High speed grasping

## · Support 2 channels of touch probefunction.

· Response time can up to 1ms.

#### Network topology to reduce wiring costs

· The standard RJ45 IndustrialEthernet fast interface is adopted to greatly reduce the labor cost and time loss of wiring.

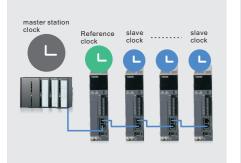


## **Typical application**

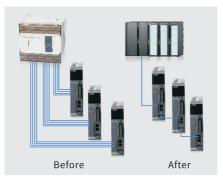
#### **CNC** machine tool

CNC machine tool is the abbreviation of digital control machine tool. It is a kind of automatic machine tool equipped with program control system. The control system equipped with program control system can logically process the program with control code or other symbol instructions, decode it, express it with coded numbers, and input it into the numerical control device through the information carrier. After calculation and processing, the CNC device sends out various control signals to control the action of the machine tool, and sutematically processes the narts according to the change

automatically processes the parts according to the shape and size required by the drawings. CNC machine tool is a kind of flexible and efficient automatic machine tool, which can solve the problem of complex, precision, small batch and multi variety of parts processing. It represents the development direction of modern machine tool control technology and is a typical mechatronic product.







#### **Ball grinding machine**

The ball grinder uses multi axis grinding wheel to polish and process artificial or natural crystal. At most, it can realize simultaneous operation of more than 20 shafts at the same time, so as to process crystal products of different shapes. The movement of more than 20 shafts can be realized by bus control, so as to realize simple and economic multi-axis control.

The high-speed winding machine is a kind of equipment that twines the linear objects to the specific workpiece, Packaging machinery refers to the machinery that can complete all or part of the product and commodity packaging complete all or part of the product and commodity packaging process. The packaging process includes filling, wrapping, sealing and other main processes, such as cleaning, stacking and disassembling. In addition, packaging also includes measuring or stamping on the package. The use of mechanical packaging can improve productivity, reduce labor intensity, meet the needs of large-scale production, and meet the requirements of sanitation. usually used for copper wire winding. In the past, it used to realize high-speed winding by the combination of frequency conversion motor and tension control system. With the increasing demand of modern industry for benefits, it can replace the original frequency conversion motor by servo to achieve efficient production. the requirements of sanitation











#### Mechanical arm

#### High speed cutting machine

Robot arm is the most widely used automatic mechanical device in the field of robotics. It can be seen in industrial manufacturing, medical treatment, entertainment service, military, semiconductor manufacturing, space exploration and other fields. Although their shapes are different, they all have a common feature, that is, they can receive instructions and accurately locate a point in three-dimensional or two-dimensional space for operation.

High speed cutting machine is a combination of ultrasonic fusing technology and traditional shearing. When the ultrasonic generator is working, the ultrasonic energy is transmitted to the welding head through the ultrasonic transducer, and violent vibration and friction are generated between the ultrasonic energy and the cutting die, so as to achieve the shearing effect, making the shearing products more beautiful, more firm and more efficient.



#### 16-axis high speed winder

#### Three servo packaging machine



## **XINJE SERVO**

Help users understand the operation of the device better



## Servo communication interface

#### Efficient communication identification


The communication interface of Xinje Servo Tuner can realize RS232 communication with Xinje servo driver through Modbus RTU. Without checking the motor code, the motor parameters can be read automatically.



#### Parameter setting interface

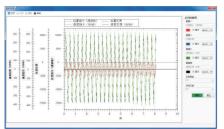
#### Easy to set parameters

Xinje servo tuner has the functions of reading, modifying, saving and downloading, and is equipped with detailed parameter description without manual assistance; the parameter list directly uses color to indicate the effective time of parameters, which makes the distinction more striking.



| <b>~</b> · · · · |                 |             |
|------------------|-----------------|-------------|
| Convenient and   | practical curve | acquisition |
|                  |                 |             |

Curve acquisition interface


Xinje servo tuner has a detailed data acquisition interface and powerful servo data acquisition function, including basic information acquisition of speed, position, current, bus voltage, etc. Help you to have a deeper and comprehensive understanding of the servo operation and improve the control scheme.

|               | 1 Happel                                                                          | Xinie<br>Sutreet Syllecturus | iens<br>Projetes   }PeanderCompanion | - 5           |
|---------------|-----------------------------------------------------------------------------------|------------------------------|--------------------------------------|---------------|
|               |                                                                                   |                              |                                      |               |
| 14            |                                                                                   |                              |                                      |               |
| Furnierter Se |                                                                                   | Supling Process              | Carsor required                      | all de        |
| Furnierter Se | Nig<br>Votend (det 1 shand setting (det 2 d *)<br>1 mand sign v<br>100 v<br>100 s |                              | Carve Das v 0 1 Carve Sec v 0 1      | (1)<br>R (12) |

## Real time observation interface

Real time dynamic curve observation

Xinje servo tuner can collect basic information such as speed, torque, position, bus voltage, etc. to help you understand the servo operation status in real time, and adjust the control scheme efficiently and timely.



## Mechanical property test interface

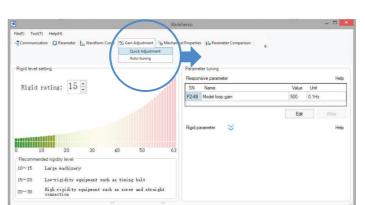
#### Accurate resonance recognition

Xinje servo tuner mechanical characteristics measurement function determines the resonance frequency according to the mechanical load operation automatically. It is equipped with five notch filters to ensure the stable and reliable operation of the equipment and eliminate the load vibration.



## Parameter comparison interface

#### Simple parameter comparison


Xinje servo tuner parameter comparison function can be used for customers to compare preset values, current driver values, file values and current upper computer interface values.



#### Gain adjustment interface

#### ·Fast adjustment

Fast adjustment, auto-tuning mode can perform inertia identification, and users can configure appropriate mode, load type and other parameters for upper computer to set the best gain parameters, or adjust the rigidity level according to the operation status of the equipment.



#### ·Auto-tuning interface

| -                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|
| Se                                                                       | et the Limit P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | osition                                                                                                                                           | 2. Auto-tu                                                              | ning Setting                                                                                 | 3. Auto-tunin                                                                                                 | ng Automati                     | cally           |
|                                                                          | p1- Select tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
| Joz                                                                      | Step1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   | x 8                                                                     |                                                                                              |                                                                                                               |                                 |                 |
| configuration                                                            | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r of stro                                                                                                                                         | ke cycles:                                                              | 1.47                                                                                         |                                                                                                               |                                 |                 |
| 2                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
| tio                                                                      | Step1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
| 2                                                                        | Movem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ent direc                                                                                                                                         | tion:                                                                   | Forward                                                                                      |                                                                                                               |                                 |                 |
| Manual setting                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   | 0                                                                       | Reverse                                                                                      |                                                                                                               |                                 |                 |
| 2                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
| ott                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               | OK                              |                 |
| 20                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
| Ste                                                                      | p2 - Neturn to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | safe los                                                                                                                                          | ation                                                                   |                                                                                              |                                                                                                               |                                 |                 |
| Retz                                                                     | urning Speed(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | irps);                                                                                                                                            | 5                                                                       | 00 🛟                                                                                         |                                                                                                               |                                 |                 |
|                                                                          | whing Accels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                   | udlar) 1                                                                | 00 1                                                                                         |                                                                                                               |                                 |                 |
|                                                                          | while accert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atton sys                                                                                                                                         |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               | 03                              |                 |
| _                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   | Auto-tu                                                                 | ning Interface                                                                               | e .                                                                                                           |                                 |                 |
| Se                                                                       | et the Limit P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | osition 3                                                                                                                                         | 2. Auto-tu                                                              | ning Setting                                                                                 | 3. Auto-tuni:                                                                                                 | ng Automati                     | cally           |
|                                                                          | p3 - Inertia s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
| Iner                                                                     | rtia Status:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inertia                                                                                                                                           | identifi                                                                | cation v                                                                                     |                                                                                                               |                                 |                 |
| Init                                                                     | tial inertia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500                                                                                                                                               |                                                                         | -                                                                                            |                                                                                                               |                                 |                 |
| fax                                                                      | Speed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                                                                                                                                              |                                                                         |                                                                                              |                                                                                                               |                                 |                 |
| Dee                                                                      | ed Loop Gain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300                                                                                                                                               |                                                                         | ٠                                                                                            |                                                                                                               |                                 |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         | •                                                                                            |                                                                                                               |                                 |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               | 01                              |                 |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                         |                                                                                              |                                                                                                               | 01                              | ŧ               |
|                                                                          | p4 - Tuning pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | raneter c                                                                                                                                         | ofigerati                                                               | on                                                                                           |                                                                                                               | 01                              | *               |
|                                                                          | p4 - Tuning pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                   |                                                                         |                                                                                              | inertía ident                                                                                                 |                                 |                 |
|                                                                          | p4 - Tuning pa<br>ting Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No inst                                                                                                                                           | ruction au                                                              | ito-tuning(no                                                                                |                                                                                                               |                                 |                 |
| Sett                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No inst                                                                                                                                           | ruction au                                                              |                                                                                              |                                                                                                               |                                 |                 |
| Set 1                                                                    | ting Method<br>e Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No inst                                                                                                                                           | ruction au                                                              | ito-tuning(no                                                                                |                                                                                                               |                                 |                 |
| Set 1<br>Hodi<br>Low                                                     | ting Method<br>e Setting<br>d Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No inst<br>Rapid p<br>Screw                                                                                                                       | ruction au                                                              | ito-tuning(no                                                                                |                                                                                                               |                                 |                 |
| Set 1<br>Hodi<br>Low                                                     | ting Method<br>e Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No inst<br>Rapid p                                                                                                                                | ruction au                                                              | ito-tuning(no                                                                                |                                                                                                               |                                 |                 |
| Set 1<br>Hodi<br>Low                                                     | ting Method<br>e Setting<br>d Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No inst<br>Rapid p<br>Screw                                                                                                                       | ruction au                                                              | ito-tuning(no                                                                                |                                                                                                               |                                 |                 |
| Set 1<br>Hodi<br>Low                                                     | ting Method<br>e Setting<br>d Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No inst<br>Rapid p<br>Screw                                                                                                                       | ruction au                                                              | ito-tuning(no                                                                                |                                                                                                               | ification)                      |                 |
| Sett<br>Node<br>Lose                                                     | ting Method<br>« Setting<br>4 Type<br>Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No inst<br>Rapid p<br>Strew<br>1000                                                                                                               | ruction au                                                              | ito-tuning(no                                                                                |                                                                                                               | ification)                      |                 |
| Sett<br>Node<br>Lose                                                     | ting Method<br>e Setting<br>d Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No inst<br>Rapid p<br>Strew<br>1000                                                                                                               | ruction au                                                              | ito-tuning(no                                                                                |                                                                                                               | ification)                      |                 |
| Sett<br>Hodi<br>Losi<br>Kuz                                              | ting Method<br>« Setting:<br>d Type<br>Speed:<br>uto-tuning Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No inst<br>Rapid p<br>Screw<br>1000                                                                                                               | ruction as                                                              | nto-tuning(no                                                                                | thoot)                                                                                                        | ification)                      | Σ               |
| Sett<br>Hode<br>Lose<br>Huz<br>Au                                        | ting Nethed<br>• Setting:<br>d Type<br>Speed<br>sto-tuning Inte<br>et the Limit F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No inst<br>Bapid p<br>Serew<br>1000                                                                                                               | ruction an<br>oxitioning<br>2. Auto-tu                                  | nto-tuning(no                                                                                | ahoot)<br>3. Auto-tuni                                                                                        | ification)<br>Of                | i<br>icall      |
| Au<br>Au                                                                 | ting Method<br>« Setting:<br>d Type<br>Speed<br>ato-tuning Inte<br>et the Limit F<br>Default Parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No inst<br>Bapid p<br>Serew<br>1000                                                                                                               | ruction an<br>oxitioning<br>2. Auto-tu                                  | nto-tuning(no<br>(control over                                                               | akoot)<br>3. Auto-tuni<br>Start                                                                               | ification)<br>01<br>ing Automat | i<br>icall      |
| Au<br>Au                                                                 | ting Nethed<br>• Setting:<br>d Type<br>Speed<br>sto-tuning Inte<br>et the Limit F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No inst<br>Bapid p<br>Serew<br>1000                                                                                                               | ruction as<br>oritioning<br>2. Auto-tu<br>luning                        | nto-tuning(no<br>(control over<br>ming Setting<br>Update                                     | ahoot)<br>3. Auto-tuni                                                                                        | ification)<br>01<br>ing Automat | i<br>icall      |
| Au<br>Stur                                                               | ting Method<br>« Setting:<br>d Type<br>Speed<br>ato-tuning Inte<br>et the Limit F<br>Default Parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No inst<br>Bapid p<br>Serew<br>1000<br>rface<br>cosition<br>ter Auto-r                                                                            | ruction as<br>oritioning<br>2. Auto-tu<br>luning                        | nto-tuning(no<br>(control over                                                               | akoot)<br>3. Auto-tuni<br>Start                                                                               | ification)<br>01<br>ing Automat | i<br>icall      |
| Au<br>Au<br>Sti                                                          | ting Nothed<br>« Setting:<br>4 Type<br>Speed<br>Ato-tuning Inte<br>et the Limit F<br>Pefenlt Parame<br>atus Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No inst<br>Bapid p<br>Serev<br>1000<br>rface<br>rosition<br>ter Auto-1<br>Curren<br>. DONE                                                        | ruction av<br>exitioning<br>2. Auto-tu<br>tuning<br>t State             | to-tuning(no<br>(control over)<br>ming Setting<br>Update<br>P2-02.2<br>P2-03.0               | ahoot)<br>3. Auto-tuni<br>Start<br>Valu<br>2<br>0                                                             | ification)<br>01<br>ing Automat | i<br>icall      |
| Au<br>Au<br>Sti<br>Aut                                                   | ting Hothed<br>• Setting:<br>4 Tope<br>Speed<br>to-tuning Inte<br>et the Limit F<br>Default Paramet<br>atus Register<br>o-tuning exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No inst<br>Bapid p<br>Serev<br>1000<br>rface<br>osition<br>ter Auto-7<br>Curren<br>. DONE<br>. Initial                                            | ruction av<br>exitioning<br>2. Auto-tu<br>tuning<br>t State             | to-tuning(no<br>(control over)<br>ming Setting<br>Update<br>P2-02.2<br>P2-03.0               | ahoot)<br>3. Auto-tuni<br>Start<br>Valu<br>2                                                                  | ification)<br>01<br>ing Automat | i<br>icall      |
| Au<br>Au<br>Sto<br>Aut<br>Norm                                           | ting Nethod<br>« Setting:<br>d Type<br>Speed:<br>to-tuning Inte<br>et the Limit F<br>Default Parame<br>atus Register<br>o-tuning ese.<br>rtia identif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | So inst<br>Bapid p<br>Serev<br>1000<br>rface<br>'osition<br>ter Auto-'<br>Curren<br>- DORE<br>- Initial<br>- Initial                              | ruction av<br>exitioning<br>2. Auto-tu<br>tuning<br>t State             | to-tuning(no<br>(control over)<br>ming Setting<br>Update<br>P2-02.2<br>P2-03.0               | aheet)<br>3. Auto-tuni<br>Start<br>2.<br>0.                                                                   | ification)<br>01<br>ing Automat | i<br>icall      |
| Au<br>Au<br>Sto<br>Aut<br>Ine<br>Spe                                     | ting Hothod<br>e Setting:<br>4 Tore<br>Speed<br>to-tuning Inte<br>et the Limit F<br>Default Parame<br>atus Register<br>ortuning ese.<br>rtis identif.<br>mal Vibratio.<br>ed loop gain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | So inst<br>Bapid p<br>Serev<br>1000<br>rface<br>osition<br>ter Auto-1<br>Curren<br>. DONE<br>. Initial<br>. Initi                                 | ruction an<br>oritioning<br>2. Auto-tu-<br>tuning<br>t State<br>ization | to-tuning(no<br>(control over<br>ming Setting<br>P2-02.2<br>P2-03 0                          | ahoot)<br>3. Auto-tuni<br>Start<br>2<br>0<br>170                                                              | ification)<br>01<br>ing Automat | i<br>icall      |
| Au<br>Au<br>Sti<br>Aut<br>Iner<br>spe<br>pos                             | ting Hethol<br>e Setting:<br>4 Type<br>Speed:<br>tto-tuning Inte<br>et the Limit F<br>defuilt Parame<br>atus Register<br>ortuning exe.<br>rtia identif<br>ad Vibratio<br>ed loog gi<br>ition loop g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | So inst<br>Bapid p<br>Serev<br>1000<br>rface<br>osition<br>ter Auto-1<br>Curren<br>DONE<br>Initial<br>Initia<br>Initia                            | ruction an<br>oritioning<br>2. Auto-tu-<br>tuning<br>t State<br>ization | to-tuning(no<br>(control over<br>ming Setting<br>P2-02.2<br>P2-03 0                          | ahoot)<br>3. Auto-tuni<br>Stært<br>2<br>0<br>170<br>100                                                       | ification)<br>01<br>ing Automat | Σ<br>icall<br>t |
| Au<br>Au<br>Sto<br>Aut<br>Iner<br>Spe<br>rig                             | ting Nethod<br>• Setting:<br>4 Type<br>Speed<br>to-tuning Inte<br>et the Limit F<br>lefoult Parame<br>atus Register<br>ortuning ase.<br>rtis identif.<br>mal Vibratio<br>ed loop gin.<br>itico loop g<br>id model ext                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | So inst<br>Bapid p<br>Serev<br>1000<br>rface<br>osition<br>ter Auto-1<br>Curren<br>DONE<br>Initia<br>Initia<br>Initia<br>Initia                   | ruction an<br>oritioning<br>2. Auto-tu-<br>tuning<br>t State<br>ization | to-tuning(no<br>(control over<br>ming Setting<br>P2-02.2<br>P2-03 0                          | 3. Auto-tuni<br>Start<br>2<br>0<br>170<br>5000<br>50                                                          | ification)<br>01<br>ing Automat | Σ<br>icall<br>t |
| Au<br>Au<br>Sto<br>Aut<br>Ine<br>spe<br>pos<br>rig<br>Not                | ting Nethod<br>• Setting:<br>1 Type<br>Synd<br>to-tuning Inte<br>et the Limit F<br>befoult Parame<br>atus Register<br>or tuning ese.<br>rtis identif.<br>mal Vibratio.<br>ed loop gin.<br>idion loop g.<br>id model atu.<br>ch filter se.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No inst<br>Expid p<br>Serew<br>1000<br>rface<br>osition<br>ter Autor<br>Curren<br>Curren<br>Curren<br>Initia<br>Initi<br>Initi<br>Initi<br>Initi  | ruction an<br>oritioning<br>2. Auto-tu-<br>tuning<br>t State<br>ization | to-tuning(no<br>(control over<br>ming Setting<br>P2-02.2<br>P2-03 n                          | 3. Auto-tuni<br>Start<br>2<br>0<br>170<br>5000<br>50<br>100                                                   | ification)<br>01<br>ing Automat | Σ<br>icall<br>t |
| Au<br>Au<br>St<br>Aut<br>Ine<br>pos<br>rig<br>Not<br>Aut                 | ting Nethod<br>• Setting:<br>1 Type<br>Speed<br>to-tuning Inte<br>et the Limit F<br>Vefault Paramet<br>atus Register<br>ortuning exe.<br>rtia identif.<br>al Vibratio.<br>ed loog gain.<br>ition loop g.<br>tition loop g.<br>ch filter se.<br>ortuning Err                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No inst<br>Rapid p<br>Serev<br>1000<br>sfface<br>osition<br>ter Auto-1<br>Curren<br>DONE<br>Initia<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi   | ruction an<br>oritioning<br>2. Auto-tu-<br>tuning<br>t State<br>ization | to-tuning(no<br>(control over<br>ming Setting<br>P2-02.2<br>P2-03 0                          | sheet)<br>3. Auto-tuni<br>Start<br>2<br>0<br>170<br>100<br>500<br>500<br>500<br>500<br>500<br>500<br>500      | ification)<br>01<br>ing Automat | Σ<br>icall<br>t |
| Au<br>Au<br>Sto<br>Aut<br>Norr<br>spe<br>pos<br>rig<br>Not<br>Aut<br>Ine | ting Nothed<br>a Setting<br>4 Tore<br>Speed<br>4 Tore<br>speed<br>4 Tore<br>speed<br>4 Tore<br>speed<br>4 Tore<br>5 and<br>4 Tore<br>5 and<br>4 Tore<br>5 and<br>4 Tore<br>5 and<br>5 and | No inst<br>Napid p<br>Scree<br>1000<br>rface<br>osition<br>Insti<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi | 2. Auto-tri<br>curing<br>t State<br>ization<br>Auto-tun                 | to-tuning(no<br>(control over<br>ming Setting<br>P2-02.2<br>P2-03.0<br>ing success           | aheet)<br>3. Auto-tuni<br>Start<br>2<br>0<br>170<br>100<br>5000<br>65<br>0                                    | ification)<br>01<br>ing Automat | Σ<br>icall<br>t |
| Au<br>Au<br>Sto<br>Aut<br>Norr<br>spe<br>pos<br>rig<br>Not<br>Aut<br>Ine | ting Nethod<br>• Setting:<br>1 Type<br>Speed<br>to-tuning Inte<br>et the Limit F<br>Vefault Paramet<br>atus Register<br>ortuning exe.<br>rtia identif.<br>al Vibratio.<br>ed loog gain.<br>ition loop g.<br>tition loop g.<br>ch filter se.<br>ortuning Err                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No inst<br>Napid p<br>Scree<br>1000<br>rface<br>osition<br>Insti<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi | 2. Auto-tri<br>curing<br>t State<br>ization<br>Auto-tun                 | to-tuning(no<br>(control over<br>ming Setting<br>P2-02.2<br>P2-03 n<br>ming success<br>P2-27 | cheet)<br>3. Auto-tuni<br>Start<br>Valv<br>2<br>0<br>170<br>170<br>100<br>500<br>50<br>100<br>005<br>0<br>257 | ification)<br>01<br>ing Automat | Σ<br>icall<br>t |
| Au<br>Au<br>Sto<br>Aut<br>Norr<br>spe<br>pos<br>rig<br>Not<br>Aut<br>Ine | ting Nothed<br>a Setting<br>4 Tore<br>Speed<br>4 Tore<br>speed<br>4 Tore<br>speed<br>4 Tore<br>speed<br>4 Tore<br>5 and<br>4 Tore<br>5 and<br>4 Tore<br>5 and<br>4 Tore<br>5 and<br>5 and | No inst<br>Napid p<br>Scree<br>1000<br>rface<br>osition<br>Insti<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi | 2. Auto-tri<br>curing<br>t State<br>ization<br>Auto-tun                 | to-tuning(no<br>(control over<br>ming Setting<br>P2-02.2<br>P2-03.0<br>ing success           | aheet)<br>3. Auto-tuni<br>Start<br>2<br>0<br>170<br>100<br>5000<br>65<br>0                                    | ification)<br>01<br>ing Automat | Σ<br>icall<br>t |
| Au<br>Au<br>Sto<br>Aut<br>Norr<br>spe<br>pos<br>rig<br>Not<br>Aut<br>Ine | ting Nothed<br>a Setting<br>4 Tore<br>Speed<br>4 Tore<br>speed<br>4 Tore<br>speed<br>4 Tore<br>speed<br>4 Tore<br>5 and<br>4 Tore<br>5 and<br>4 Tore<br>5 and<br>4 Tore<br>5 and<br>5 and | No inst<br>Napid p<br>Scree<br>1000<br>rface<br>osition<br>Insti<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi<br>Initi | 2. Auto-tri<br>curing<br>t State<br>ization<br>Auto-tun                 | to-tuning(no<br>(control over<br>ming Setting<br>P2-02.2<br>P2-03 n<br>ming success<br>P2-27 | cheet)<br>3. Auto-tuni<br>Start<br>Valv<br>2<br>0<br>170<br>170<br>100<br>500<br>50<br>100<br>005<br>0<br>257 | ification)<br>01<br>ing Automat | Σ<br>icall<br>t |

#### Software

#### **Monitor interface**

#### Rich and overall real-time monitoring

Xinje servo tuner has real-time status, alarm monitor and servo operation status, all of which are under your control

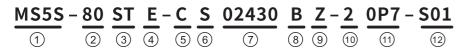
| Comunication @Pers       | enate 📐 Waveform Cu | ne Sünnähitmert 51  |                |                          | treparties | Mandar  |         |                |  |
|--------------------------|---------------------|---------------------|----------------|--------------------------|------------|---------|---------|----------------|--|
| have signed              |                     |                     |                | intpet signal            | arie       |         | )       |                |  |
| Rec                      | Phonical input      | highest least       |                | lind                     | Denre      | weight. | _       | Segural segura |  |
| T-OF Same andle          | Bann .              | 2-08                |                | 1118,90 +                |            |         | -       | 11129-012      |  |
| o-tis boundiessi a       | Brea.               | 2108                |                | and press                | -          |         |         | 1000           |  |
| west todakit forw        | 223                 | nd.                 |                | FOR Ante Speed printling | Ree        |         |         | 101            |  |
| mit bemere feite i.      | Firm                | 842                 |                | THE secution departies   | See        |         |         | TINK           |  |
| AURIST ALLEY CLASS       | 127                 | 101-107             |                | 1982 reals               | 8144       |         |         | 2-107          |  |
| P.C. Personal sciles and | Sec.                | 145                 |                | The Andrew Links         | Ares       |         |         | 112 :          |  |
| WG. howas the se         | Free                | PG.                 |                | late and live determine  |            |         |         |                |  |
| first interial most      | No.                 | 379-6               |                | Saits alabas             |            |         |         |                |  |
| CP2+4: Internal serti.   | Tex                 | 22.4                |                | Dates                    |            | Value   | (but    |                |  |
|                          |                     |                     |                |                          |            | ÷       | 194     |                |  |
| Res.                     | 100                 | mail.               | -              | The report speed researd |            |         | 194     |                |  |
| Samler Andian rulas      |                     | E entrolar palse    |                | Tops onesi               |            | ÷       | + fle = | sted           |  |
| lagar research politics  |                     | a lastraction palse |                | Perhanital angle         |            |         |         |                |  |
|                          | <u>.</u>            |                     |                | forteival analy          |            | 4       |         |                |  |
| King states.             |                     |                     | dealog marring |                          |            |         |         |                |  |
| Fee                      | Enerse              | State Brites        |                |                          | Tuisi      |         |         | 8624           |  |

## Naming rule

#### MS6 servo motor naming rule

# $\frac{\text{MS6S}}{1} - \frac{60}{2} \quad \frac{\text{C S}}{34} \quad \frac{30}{5} \quad \frac{\text{B Z 1}}{678} \quad \frac{-2}{9} \quad \frac{0\text{P4}}{10}$

| $\bigcirc$ Iner     | tia type                    | 2 Bas             | e numbe    | ③ Enco                       | oder m              | odel        |                | (4) Encod  | er specificat   | tion (5)     | Rate    | ed speed          | 10 Rat | ed power        |
|---------------------|-----------------------------|-------------------|------------|------------------------------|---------------------|-------------|----------------|------------|-----------------|--------------|---------|-------------------|--------|-----------------|
| Symbol              | Inertia                     | Symbol            | Base numbe | Symbol                       | Symbol Product name |             |                | Symbol     | Encoder struct  | ure S        | ymbol   | Rated speed (rpm) | Symbol | Rated power(kw) |
| MS6S                | Low inertia motor           | 40                | 40 base    | С                            | Magnet              | ic Encoder  |                | S          | single turn 17- | -bit         | 15      | 1500              | 0P1    | 100W            |
| MS6G                | Medium inertia motor        | 60                | 60 base    | T Optical encoder            |                     | Μ           | Multi-turn 17- | bit        | 20              | 2000         | 0P2     | 200W              |        |                 |
| MS6H                | High inertia motor          | 80                | 80 base    |                              |                     |             |                | L          | Multi-turn 23-  | bit          | 25      | 2500              | 0P4    | 400W            |
|                     |                             | 100               | 100 base   |                              |                     |             |                |            |                 |              | 30      | 3000              | 0P7    | 750W            |
|                     |                             | 130               | 130 base   |                              |                     |             |                |            |                 |              |         |                   | 0P8    | 850W            |
|                     |                             | 180               | 180 base   |                              |                     |             |                |            |                 |              |         |                   | 1P0    | 1.0W            |
| <b>O</b>            |                             |                   |            |                              |                     |             |                |            |                 |              |         |                   | 1P5    | 1.5W            |
| <sup>(6)</sup> Moto | or shaft speci              | fication          | (7) Pow    | ver-off brake <sup>(8)</sup> |                     | (8) Motor   | conne          | ector type | 9 Powe          | r supply vo  | oltage  |                   | 1P8    | 1.8W            |
| Symbol              | Shaft specif                | ication           | Symbol     | Power-off b                  | orake               | Symbol      | Conne          | ector type | Symbol          | Power supply | voltage |                   | 2P0    | 2.0W            |
| А                   | With key, no oil seal, wi   | th threaded hole  | Z          | With bra                     | ke                  | 1           | Am             | np plug    | 2               | 220V         |         |                   | 2P3    | 2.3W            |
| В                   | With key, with oil seal, w  | ith threaded hole | Empty      | Without br                   | ake                 | 2           | Aviat          | tion plug  | 4               | 380V         |         |                   | 3P0    | 3.0W            |
| С                   | No key, no oil seal, with   | h threaded hole   |            |                              |                     |             |                |            |                 |              |         |                   | 4P4    | 4.4W            |
| D                   | No key, with oil seal, with | th threaded hole  |            |                              |                     |             |                |            |                 |              |         |                   | 5P5    | 5.5W            |
| *Note: t            | he above is only an e       | ers for all the m | nodels. We | provide CS                   | . СМ, ТІ            | Lcombinatio | on models.     |            |                 |              | 7P5     | 7.5W              |        |                 |


#### Servo driver naming rule



| $\bigcirc$ Nam | е            | <li>② Туре</li> | )                  | <li>③ Voltage</li> |
|----------------|--------------|-----------------|--------------------|--------------------|
| Symbol         | Product name | Symbol          | Product series     | Symbol             |
| DS             | Servo driver | 5E              | XNET bus type      | 2                  |
|                |              | 5L              | Pulse type         | 4                  |
|                |              | 5C              | EtherCAT bus type  |                    |
|                |              | 5F              | Full function type |                    |
|                |              | 5K              | Standard type      |                    |

| ıbol | Rated in |
|------|----------|
| 2    | AC       |
| 1    | AC       |
|      |          |

#### MS5 servo motor naming rule



| ① Туре | 9                                                                     | ② Base      | number        | ③ Nan          | пе                  | 4                                    | (4) Motor structure |                     |         | 5 Encoder structure |                  | © Encoder specification |                    |
|--------|-----------------------------------------------------------------------|-------------|---------------|----------------|---------------------|--------------------------------------|---------------------|---------------------|---------|---------------------|------------------|-------------------------|--------------------|
| Symbol | Inertia                                                               | Symbol      | Base number   | Symbol         | Symbol Product name |                                      | Symbol              | Oil seal            | Sym     | bol                 | Туре             | Symbol                  | Specification      |
| MS5S   | Low inertia motor                                                     | 40          | 40 base       | ST             | Sine wave drivi     | ing motor E                          | Empty               | No oil seal         | С       | ;                   | Magnetic Encoder | S                       | Single turn 17-bit |
| MS5G   | Medium inertia motor                                                  | 60          | 60 base       |                |                     |                                      | E                   | With oil seal       | Т       |                     | Optical encoder  | М                       | Multi-turn 17-bit  |
| MS5H   | High inertia motor                                                    | 80          | 80 base       |                |                     |                                      |                     |                     |         |                     |                  | L                       | Multi-turn 23-bit  |
|        |                                                                       | 110         | 110 base      |                |                     |                                      |                     |                     |         |                     |                  |                         |                    |
|        |                                                                       | 130         | 130 base      |                |                     |                                      |                     |                     |         |                     |                  |                         |                    |
|        |                                                                       | 180         | 180 base      |                |                     |                                      |                     |                     |         |                     |                  |                         |                    |
| ⑦ Moto | <ol> <li>Motor specification</li> <li> <sup>®</sup> M     </li> </ol> |             | Motor structu | otor structure |                     | e <sup>®</sup> Voltage specification |                     |                     | Мо      | tor power           | 2 Design number  |                         |                    |
| Symbol | Rated torque (N · m)                                                  | Rated speed | d (rpm) Sy    | mbol Shaft k   | ey Symbol           | Power-off brake                      | Sym                 | ol Voltage specific | ation S | ymbo                | Rated power (kw) | Symbol                  | Meaning            |

| Symbol    | Rated torque (N $\cdot$ m) | Rated speed (rpm)     | Symbol       | Shaft key       | Symbol      | Power-off brake     | Symbol       | Voltage specification | Symbol | Rated power (kw) | Symbol | Meaning      |
|-----------|----------------------------|-----------------------|--------------|-----------------|-------------|---------------------|--------------|-----------------------|--------|------------------|--------|--------------|
| 00630     | 0.637                      | 3000                  | В            | With key        | Empty       | Without brake       | 2            | 220V                  | 0P1    | 0.1              | S      | Standard     |
| 01330     | 1.3                        | 3000                  |              |                 | z           | With brake          | 4            | 380V                  | 0P2    | 0.2              | 01     | Design numbe |
| 02430     | 2.39                       | 3000                  |              |                 |             |                     |              |                       | 0P4    | 0.4              |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 0P7    | 0.75             |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 0P8    | 0.85             |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 1P0    | 1.0              |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 1P5    | 1.5              |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 1P8    | 1.8              |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 2P0    | 2.0              |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 2P3    | 2.3              |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 2P9    | 2.9              |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 4P4    | 4.4              |        |              |
|           |                            |                       |              |                 |             |                     |              |                       | 5P5    | 5.5              |        |              |
| Note: the | above is only an exan      | ple. See the motor pa | arameters fo | r all the model | s. We provi | de CS, CM, TL, T co | ombination r | nodels.               | 7P5    | 7.5              |        |              |

| MS6/MS5 m           |      |      |      |      |      |          |      |      |      |      |      |      |      |      |
|---------------------|------|------|------|------|------|----------|------|------|------|------|------|------|------|------|
| Item                | 100W | 200W | 400W | 750W | 850W | 1.0W     | 1.5W | 1.8W | 2.0W | 2.3W | 2.9W | 4.4W | 5.5W | 7.5W |
| Low inertia MS6S    |      | 60   | 60   | 80   |      | 80 / 100 | 100  |      | 100  |      |      |      |      |      |
| High inertia MS6H   | 40   | 60   | 60   | 80   | 130  | 80       | 130  | 130  |      | 130  | 180  | 180  | 180  | 180  |
| Low inertia MS5S    | 40   | 60   | 60   | 80   |      | 80 / 110 | 110  | 110  |      |      |      |      |      |      |
| Medium inertia MS5G |      |      |      |      | 130  |          | 130  | 130  |      | 130  | 180  | 180  | 180  | 180  |
| High inertia MS5H   |      | 60   | 60   | 80   |      |          |      |      |      |      |      |      |      |      |

#### **DS5** driver specification

| Europeticon        |                    | Contro           | mode              |                |       |             |              | Control                         | method                       |       |       |          |          |
|--------------------|--------------------|------------------|-------------------|----------------|-------|-------------|--------------|---------------------------------|------------------------------|-------|-------|----------|----------|
| Function           | Postion<br>control | Speed<br>control | Torque<br>control | Bus<br>control | Pulse | Line driver | Analog input | External<br>displacement sensor | ABZ differential<br>feedback | RS232 | RS485 | SI input | SO input |
| Pulse type         |                    |                  |                   |                |       |             |              |                                 |                              |       |       |          |          |
| DS5L series        |                    |                  |                   |                |       |             |              |                                 |                              |       |       | 4        | 4        |
| EtherCAT type      |                    |                  |                   |                |       |             |              |                                 |                              |       |       | 4        | 4        |
| DS5C series        |                    |                  |                   |                |       |             |              |                                 |                              |       |       |          |          |
| XNet bus type      |                    |                  |                   |                |       |             |              |                                 |                              |       |       |          |          |
| DS5E type          |                    |                  |                   |                |       |             |              |                                 |                              |       |       |          |          |
| Full function type |                    |                  |                   |                |       |             |              |                                 |                              |       |       | 10       | 8        |
| DS5F series        |                    |                  |                   |                |       |             |              |                                 |                              |       |       | <b>—</b> |          |
| Standard type      |                    |                  |                   |                |       |             |              |                                 |                              |       |       | 5        | 4        |
| DS5K series        |                    |                  |                   |                |       |             |              |                                 |                              |       |       |          |          |

\* Note: DS5E, DS5L, DS5C series 750W and below servo driver has 3 inputs and 3 outputs



| age | specification |  |
|-----|---------------|--|
|     |               |  |

#### ④ Driver power

| ated input voltage | Symbol | Rated output power (KW) |
|--------------------|--------|-------------------------|
| AC220V             | 0P1    | 0.1                     |
| AC380V             | 0P2    | 0.2                     |
|                    | 0P4    | 0.4                     |
|                    | 0P7    | 0.75                    |
|                    | 1P5    | 1.5                     |
|                    | 2P3    | 2.3                     |
|                    | 2P6    | 2.6                     |
|                    | 3P0    | 3.0                     |
|                    | 4P5    | 4.5                     |
|                    | 5P5    | 5.5                     |
|                    | 7P5    | 7.5                     |
|                    |        |                         |

#### (5) Encoder specification

| Symbol | Encoder specification |
|--------|-----------------------|
| т      | Communication encoder |

## Driver/motor model list

#### DS5 series driver model list

| Series<br>Power[kw] | DS5E series<br>X-NET bus type | DS5C series<br>EtherCAT bus type | DS5F series<br>Full function type                  |
|---------------------|-------------------------------|----------------------------------|----------------------------------------------------|
| 0.1                 | DS5E-20P1-PTA                 | DS5C-20P1-PTA                    | DS5F-20P1-PTA                                      |
| 0.2                 | DS5E-20P2-PTA                 | DS5C-20P2-PTA                    | DS5F-20P2-PTA                                      |
| 0.4                 | DS5E-20P4-PTA                 | DS5C-20P4-PTA                    | DS5F-20P4-PTA                                      |
| 0.75                | DS5E-20P7-PTA                 | DS5C-20P7-PTA                    | DS5F-20P7-PTA                                      |
| 1.5                 | DS5E-21P5-PTA                 | DS5C-21P5-PTA                    | DS5F-21P5-PTA                                      |
| 2.3                 | DS5E-22P3-PTA                 | DS5C-22P3-PTA                    | DS5F-22P3-PTA                                      |
| 2.6                 | DS5E-22P6-PTA                 | DS5C-22P6-PTA                    | DS5F-22P6-PTA                                      |
| 1                   | DS5E-41P0-PTA                 | DS5C-41P0-PTA                    | /                                                  |
| 1.5                 | DS5E-41P5-PTA                 | DS5C-41P5-PTA                    | /                                                  |
| 3                   | DS5E-43P0-PTA                 | DS5C-43P0-PTA                    | DS5F-43P0-PTA                                      |
| 5.5                 | DS5E-45P5-PTA                 | DS5C-45P5-PTA                    | DS5F-45P5-PTA                                      |
| 7.5                 | DS5E-47P5-PTA                 | DS5C-47P5-PTA                    | DS5F-47P5-PTA                                      |
| 11                  | DS5E-411P0-PTA                | DS5C-411P0-PTA                   | DS5F-411P0-PTA                                     |
| 15                  | DS5E-415P0-PTA                | DS5C-415P0-PTA                   | DS5F-415P0-PTA                                     |
| Series<br>Power[kw] | DS5K series<br>Standard type  | DS5L series<br>Pulse type        | W5E3 series<br>Integrated driving and control type |
| 0.1                 | DS5K-20P1-PTA                 | DS5L-20P1-PTA                    | /                                                  |
| 0.2                 | DS5K-20P2-PTA                 | DS5L-20P2-PTA                    | /                                                  |
| 0.4                 | DS5K-20P4-PTA                 | DS5L-20P4-PTA                    | /                                                  |
| 0.75                | DS5K-20P7-PTA                 | DS5L-20P7-PTA                    | W5E3-20P7-PTA                                      |
| 1.5                 | DS5K-21P5-PTA                 | DS5L-21P5-PTA                    | W5E3-21P5-PTA                                      |
| 2.3                 | DS5K-22P3-PTA                 | DS5L-22P3-PTA                    | /                                                  |
| 2.6                 | DS5K-22P6-PTA                 | DS5L-22P6-PTA                    | /                                                  |
| 1                   | DS5K-41P0-PTA                 | /                                | /                                                  |
| 1.5                 | DS5K-41P5-PTA                 | /                                | /                                                  |
| 3                   | DS5K-43P0-PTA                 | /                                | /                                                  |
| 5.5                 | DS5K-45P5-PTA                 | /                                | /                                                  |
| 7.5                 | DS5K-47P5-PTA                 | /                                | /                                                  |

#### MS6S series motor model list

| Power[kw] | Motor model                  | Flange   | Rated speed [RPM] | Rated torque [Nm] | Inertia type | Encoder bit [bit] |
|-----------|------------------------------|----------|-------------------|-------------------|--------------|-------------------|
| 0.1       | MS6H-40CS/CM30B(Z)1-20P1     | 40       | 3000              | 0.32              | high inertia | 17                |
| 0.2       | MS6S-60CS/CM30B(Z)1-20P2     | <u> </u> | 3000              | 0.64              | low inertia  | 17                |
| 0.2       | MS6H-60CS/CM30B(Z)1-20P1     | 60       | 3000              | 0.64              | high inertia | 17                |
| 0.4       | MS6S-60CS/CM30B(Z)1-20P4     | 60       | 3000              | 1.27              | low inertia  | 17                |
| 0.4       | MS6H-60CS/CM30B(Z)1-20P4     | 60       | 3000              | 1.27              | high inertia | 17                |
|           | MS6S-80CS/CM30B(Z)1-20P7     |          | 3000              | 2.39              | low inertia  | 17                |
| 0.75      | MS6H-80CS/CM30B(Z)1-20P7     | 80       | 3000              | 2.39              | high inertia | 17                |
|           | MS6H-80CS/CM/TL20B(Z)1-20P7  |          | 2000              | 3.50              | high inertia | 17/23             |
| 0.85      | MS6H-130CS/CM/TL15B(Z)2-20P8 | 130      | 1500              | 5.41              | high inertia | 17/23             |
| 0.05      | MS6H-130CS/CM/TL15B(Z)2-40P8 | 150      | 1500              | 5.41              | high inertia | 17/23             |
|           | MS6S-80CS/CM30B(Z)1-21P0     | 80       | 3000              | 3.18              | low inertia  | 17                |
| 1         | MS6H-80CS/CM30B(Z)1-21P0     | 00       | 3000              | 3.18              | high inertia | 17                |
|           | MS6S-100CS/CM30B(Z)2-21P0    | 100      | 3000              | 3.18              | low inertia  | 17                |
| 1.5       | MS6S-100CS/CM30B(Z)2-21P5    | TOO      | 3000              | 4.78              | low inertia  | 17                |
| 1.5       | MS6H-130CS/CM/TL20B(Z)2-21P5 | 130      | 2000              | 7.16              | high inertia | 17/23             |
| 1.8       | MS6H-130CS/CM/TL15B(Z)2-21P8 | 130      | 1500              | 11.5              | high inertia | 17/23             |
| 2         | M56S-100CS/CM/TL30B(2)2-22P0 | 100      | 3000              | 6.37              | low inertia  | 17/23             |
| 2.3       | MS6H-130CS/CM/TL15B(Z)2-22P3 | 130      | 1500              | 14.6              | high inertia | 17/23             |
| 3.0       | MS6H-180CS/CM/TL15B(Z)2-43P0 |          | 1500              | 19.0              | high inertia | 17/23             |
| 4.4       | MS6H-180CS/CM/TL15B(Z)2-44P4 | 180      | 1500              | 28.0              | high inertia | 17/23             |
| 5.5       | MS6H-180CS/CM/TL15B(Z)2-45P5 | 100      | 1500              | 35.0              | high inertia | 17/23             |
| 7.5       | MS6H-180CS/CM/TL15B(Z)2-47P5 |          | 1500              | 47.8              | high inertia | 17/23             |

\*Note: 1. B(Z) indicates the brake is optional, B indicates no brake model, BZ indicates brake model. 2. The product status marked with gray font is under development and will be launched one after another. Please look forward to it.

#### MS5S series motor model list

| Power[kw] | Motor model                                                         |
|-----------|---------------------------------------------------------------------|
| 0.1       | MS5S-40STE-CS/CM00330B -20P1-S01/S02                                |
| 0.2       | MS5S-60STE-CS/CM00630B□-20P2-S01/S02                                |
|           | MS5H-60STE-CS/CM00630B□-20P2-S01/S02                                |
|           | MS5S-60STE-CS/CM01330B -20P4-S01/S02                                |
| 0.4       | MS5H-60STE-CS/CM01330B -20P4-S01/S02                                |
|           | MS-60STE-T01330B□-20P4-D01                                          |
|           | MS5S-80STE-CS/CM02430B-20P7-S01/S02                                 |
|           | MS5S-80STE-CS/CM02430BZ-20P7-S01/S02                                |
| 0.75      | MS5H-80STE-CS/CM02430B-20P7-S01/S02                                 |
|           | MS5H-80STE-CS/CM02430BZ-20P7-S01/S02                                |
|           | MS-80STE-T02430B□-20P7                                              |
|           | MS-80STE-T03520B - 20P7                                             |
|           | MS5G-130STE-CS/CM05415B-20P8-S01                                    |
| 0.85      | MS5G-130STE-CS/CM05415BZ-20P8-S01                                   |
|           | MS5G-130STE-TL05415B-20P8-S01                                       |
|           | MS5G-130STE-TL05415BZ-20P8-S01                                      |
|           | MS5S-80STE-CS/CM03230B -21P0-S01/S02                                |
| 1.0       | MS5H-80STE-CS/CM03230B -21P0-S01/S02                                |
|           | MS5S-110STE-CS/CM03230B -21P0-S01                                   |
|           | MS5S-110STE-TL03230B -21P0                                          |
|           | MS-110STE-T05030B□-21P5                                             |
|           | MS5S-110STE-CS/CM04830B□-21P5-S01                                   |
|           | MS5S-110STE-TL04830B -21P5-S01                                      |
| 1.5       | MS-130ST-T06025B□-21P5                                              |
|           | MS-130ST-T10015B□-21P5                                              |
|           | MS5G-130STE-CS/CM06025B-21P5-S01                                    |
|           | MS5G-130STE-CS/CM07220B -21P5-S01                                   |
|           | MS5G-130STE-TL07220B -21P5-S01                                      |
|           | MS5G-130STE-CS/CM10015B-21P5-S01                                    |
|           | MS5G-130STE-CS/CM11515B -21P8-S01                                   |
|           | MS5G-130STE-TL11515B -21P8-S01                                      |
|           | MS5G-130STE-CS/CM11515B -41P8-S01                                   |
|           | MS5G-130STE-TL11515B -41P8-S01                                      |
| 1.8       | MS5S-110STE-TL06030B -21P8-S01<br>MS5S-110STE-CS/CM06030B -21P8-S01 |
|           | MS5G-130STE-CS/CM00030B -22P3-S01                                   |
|           | MS5G-130STE-L3/CM14615B -22P3-S01                                   |
| 2.2       | MS5G-130STE-CS/CM14615B -42P3-S01                                   |
| 2.3       | MS5G-130STE-TL14615B -42P3-S01                                      |
|           | MS-130ST-T15015GB -22P3                                             |
| 2.4       | MS-130ST-T07730B -22P4                                              |
| 2.4       | MS-130ST-TL10025B -22P6                                             |
| 2.0       | MS5G-180STE-TL19015B -42P9-S01                                      |
| 3.0       | MS-130ST-TL10030B -43P0                                             |
| 4.4       | MS5G-180STE-TL28015B -44P4-S01                                      |
| 5.5       | MS5G-180STE-TL35015B -45P5-S01                                      |
| 7.5       | MS5G-180STE-TL48015B -47P5-S01                                      |
| 11        | MS-220STE-TL70015B-411P0-XJ                                         |
| 15        | MS-220STE-TL96015B-415P0-XJ                                         |
|           |                                                                     |

\*Note: 1. B indicates the brake is optional, B indicates no brake model, BZ indicates brake model.

CS/CM indicates single turn magnetic encoder CS or multi-turn magnetic encoder CM are optional.
 80 flange and below can choose S01 amp or S02 small aviation plug. 110 flange and above with S01 code are all aviation plug.
 Please refer to electrical parameters and dimensions in the following page for other detailed motor characteristic parameters.

#### Driver/motor model list

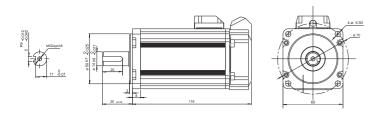
| Flange | Rated speed [RPM] | Rated torque [Nm] | Inertia type   | Encoder bit [bit] |
|--------|-------------------|-------------------|----------------|-------------------|
| 40     | 3000              | 0.32              | low inertia    | 17                |
|        | 3000              | 0.64              | low inertia    | 17                |
| 60     | 3000              | 0.64              | high inertia   | 17                |
|        | 3000              | 1.27              | low inertia    | 17                |
| 60     | 3000              | 1.27              | high inertia   | 17                |
|        | 3000              | 1.27              | 1              | 17                |
|        | 3000              | 2.39              | low inertia    | 17                |
|        | 3000              | 2.39              | low inertia    | 17                |
| 80     | 3000              | 2.39              | high inertia   | 17                |
| 00     | 3000              | 2.39              | high inertia   | 17                |
|        | 3000              | 2.39              | 1              | 17                |
|        | 2000              | 3.5               | 1              | 17                |
|        | 1500              | 5.4               | medium inertia | 17                |
| 120    | 1500              | 5.4               | medium inertia | 17                |
| 130    | 1500              | 5.4               | medium inertia | 23                |
|        | 1500              | 5.4               | medium inertia | 23                |
| 0.0    | 3000              | 3.18              | low inertia    | 17                |
| 80     | 3000              | 3.18              | high inertia   | 17                |
|        | 3000              | 3.18              | low inertia    | 17                |
|        | 3000              | 3.18              | low inertia    | 23                |
| 110    | 3000              | 5                 | 1              | 17                |
|        | 3000              | 4.77              | low inertia    | 17                |
|        | 3000              | 4.77              | low inertia    | 23                |
|        | 2500              | 6                 | 1              | 17                |
|        | 1500              | 10                | 1              | 17                |
|        | 2500              | 6                 | medium inertia | 17                |
|        | 2000              | 7.2               | medium inertia | 17                |
| 120    | 2000              | 7.2               | medium inertia | 23                |
| 130    | 1500              | 10                | medium inertia | 17                |
|        | 1500              | 11.5              | medium inertia | 17                |
|        | 1500              | 11.5              | medium inertia | 23                |
|        | 1500              | 11.5              | medium inertia | 17                |
|        | 1500              | 11.5              | medium inertia | 23                |
| 110    | 3000              | 6                 | low inertia    | 23                |
|        | 3000              | 6                 | low inertia    | 17                |
|        | 1500              | 14.6              | medium inertia | 17                |
|        | 1500              | 14.6              | medium inertia | 23                |
| 130    | 1500              | 14.6              | medium inertia | 17                |
| 100    | 1500              | 14.6              | medium inertia | 23                |
|        | 1500              | 15                | 1              | 17                |
|        | 3000              | 7.7               | 1              | 17                |
|        | 2500              | 10                | 1              | 23                |
| 180    | 1500              | 19                | medium inertia | 23                |
| 130    | 3000              | 10                | 1              | 23                |
| 100    | 1500              | 28                |                | 23                |
| 180    | 1500              | 35                | medium inertia | 23                |
|        | 1500              | 48                |                | 23                |
| 220    | 1500              | 70                | 1              | 23                |
|        | 1500              | 96                | 1              | 23                |

## MS6 series 400W

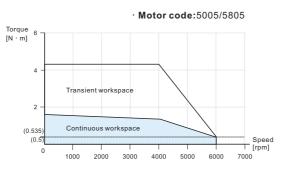
#### Motor parameter

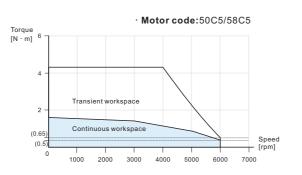
| Voltage level             |                   | AC 220V             |                            |                  |            |  |
|---------------------------|-------------------|---------------------|----------------------------|------------------|------------|--|
| Motor model               |                   | MS6S-60             |                            | MS6H-60          |            |  |
|                           |                   | CS/CM30B1           | CS/CM30BZ1                 | CS/CM30B1        | CS/CM30BZ1 |  |
|                           |                   |                     | 20P                        | 4                |            |  |
| Motor code                |                   | 5005 5805 50C5 58C5 |                            |                  |            |  |
| Rated power [kw]          |                   |                     | 0.4                        |                  |            |  |
| Rated speed [rpm]         |                   |                     | 3000                       |                  |            |  |
| Max speed [rpm]           |                   | 6500                |                            |                  |            |  |
| Rated torque [rpm]        |                   |                     | 1.27                       |                  |            |  |
| Max torque [rpm]          |                   | 4.445               |                            |                  |            |  |
| Rated current [mA]        |                   | 2600                |                            |                  |            |  |
| Rotor inertia[10^-7kg·m2] |                   | 267                 | 273                        | 520              | 590        |  |
| Inertia type              |                   | Lov                 | w inertia                  | High ine         | ertia      |  |
| Recommended rotor inertia | ratio             |                     | Within 30 tim              | ies              |            |  |
| Polar logarithm           |                   |                     | 5                          |                  |            |  |
| Encoder bit               |                   |                     | 17                         |                  |            |  |
| Encoder type              |                   | Magnetic            |                            |                  |            |  |
| Motor insulation class    |                   | ClassF(155°C)       |                            |                  |            |  |
| Protection level          |                   | IP65                |                            |                  |            |  |
| Am Using environment      | bient temperature |                     | -15°C~+40°                 | C                |            |  |
| Am                        | bient humidity    |                     | Relative humidity < 90% (n | no condensation) |            |  |

(Unit: mm)


#### **Brake specification**

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.


| •                              | •        |
|--------------------------------|----------|
| Static friction torque [N · m] | ≥1.3     |
| Rated power [W]                | 7.2      |
| Suction time [ms]              | <50      |
| Release time [ms]              | <20      |
| Excitation current [A]         | 0.3      |
| Suction voltage [V]            | <18      |
| Release voltage [V]            | >1.5     |
| Excitation voltage [V]         | DC24±10% |
|                                |          |


#### Dimension diagram

| Motor model         | LA     | ±1         | Inertia level |
|---------------------|--------|------------|---------------|
| Motor model         | Normal | With brake | inertia level |
| MS6S-60C□30B□1-20P4 | 107    | 139        | Low inertia   |
| MS6H-60C□30B□1-20P4 | 119    | 151        | High inertia  |



#### Torque feature (T – N curve)



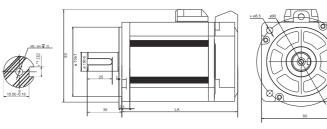


## MS6 series 750W

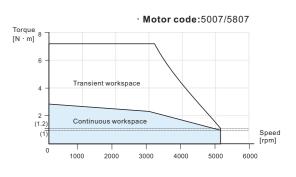
#### Motor parameter

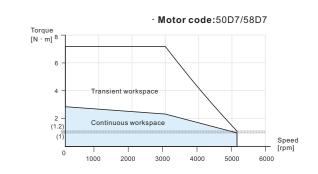
| Voltage              | elevel           | AC 220V            |                        |                      |            |  |
|----------------------|------------------|--------------------|------------------------|----------------------|------------|--|
| Motor model          |                  | MS6S-80            |                        | MS6F                 | MS6H-80    |  |
|                      |                  | CS/CM30B1          | CS/CM30BZ1             | CS/CM30B1            | CS/CM30BZ1 |  |
|                      |                  |                    | 20                     | P7                   |            |  |
| Motor code           |                  | 5007 5807 50D7 58E |                        |                      |            |  |
| Rated power [kw]     |                  |                    | 0.                     | 75                   |            |  |
| Rated speed [rpm]    |                  |                    | 30                     | 00                   |            |  |
| Max speed [rpm]      |                  | 5200               |                        |                      |            |  |
| Rated torque [rpm]   |                  | 2.39               |                        |                      |            |  |
| Max torque [rpm]     |                  | 7.17               |                        |                      |            |  |
| Rated current [mA]   |                  | 4000 4             |                        | 4100                 |            |  |
| Rotor inertia[10^-7k | g · m² ]         | 980                | 1030                   | 1670                 | 1693       |  |
| Inertia type         |                  |                    | Low inertia            | High                 | inertia    |  |
| Recommended roto     | r inertia ratio  |                    | Within 3               | 0 times              |            |  |
| Polar logarithm      |                  |                    | 5                      | 5                    |            |  |
| Encoder bit          |                  |                    | 1                      |                      |            |  |
| Encoder type         |                  |                    | Magr                   | netic                |            |  |
| Motor insulation cla | SS               | ClassF(155°C)      |                        |                      |            |  |
| Protection level     |                  | IP65               |                        |                      |            |  |
| Using environment    | Ambient tempera  | ture               | -15°C~                 | +40°C                |            |  |
| comy chantent        | Ambient humidity |                    | Relative humidity < 90 | 0% (no condensation) |            |  |

#### **Brake specification**


It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| Static friction torque | [N · m] | ≥    | 2.5        |
|------------------------|---------|------|------------|
| Rated power [W]        |         |      | 8          |
| Suction time [ms]      |         | <    | (80        |
| Release time [ms]      |         | <    | (40        |
| Excitation current [A  | .]      | 0.   | 233        |
| Suction voltage [V]    |         | <    | 16.8       |
| Release voltage [V]    |         |      | ≥1         |
| Excitation voltage [\  | []      | DC24 | $\pm 10\%$ |
|                        |         |      |            |


#### **Dimension diagram**


(Unit: mm)

| Motor model         | LA     | Inertia level |              |
|---------------------|--------|---------------|--------------|
| Motor moder         | Normal | With brake    | mertialever  |
| MS6S-80C□30B□1-20P7 | 117    | 150           | Low inertia  |
| MS6H-80C□30B□1-20P7 | 124    | 157           | High inertia |



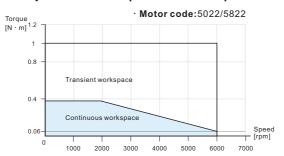
### Torque feature (T – N curve)





## MS5 series 100W

#### Motor parameter


| Voltage level             |                     | AC 220V                |                     |  |
|---------------------------|---------------------|------------------------|---------------------|--|
|                           |                     | MS5S-40STE             |                     |  |
| Motor model               |                     | CS/CM00330B            | CS/CM00330BZ        |  |
|                           |                     | 20P1-                  | -S01                |  |
| Motor code                |                     | 5022                   | 5822                |  |
| Rated power [kv           | v]                  | 0                      | .1                  |  |
| Rated speed [rp           | m]                  | 30                     | 00                  |  |
| Max speed [rpm]           |                     | 60                     | 00                  |  |
| Rated torque [rpm]        |                     | 0.32                   |                     |  |
| Max torque [rpm]          |                     | 0.96                   |                     |  |
| Rated current [mA]        |                     | 950                    |                     |  |
| Rotor inertia[10^-7kg·m2] |                     | 44                     | 53                  |  |
| Inertia type              |                     | Low in                 | ertia               |  |
| Recommended               | rotor inertia ratio | Within 30 times        |                     |  |
| Polar logarithm           |                     | 5                      |                     |  |
| Encoder bit               |                     | 17                     |                     |  |
| Encoder type              |                     | Magnetic               |                     |  |
| Motor insulation class    |                     | ClassF(155°C)          |                     |  |
| Protection level          |                     | IP65                   |                     |  |
|                           | Ambient temperature | -15°C~-                | +40°C               |  |
| Using environment         | Ambient humidity    | Relative humidity < 90 | % (no condensation) |  |

#### Brake specification

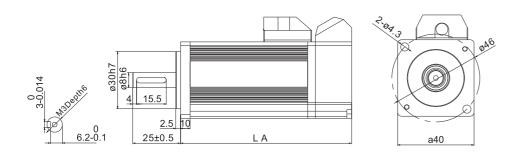
It is a maintain brake, the excitation will release it.

| it callior be used for braking with | en me motor is rotating. |
|-------------------------------------|--------------------------|
| Static friction torque [N · m]      | ≥0.3                     |
| Rated power [W]                     | 6                        |
| Suction time [ms]                   | <50                      |
| Release time [ms]                   | <20                      |
| Excitation current [A]              | 0.25                     |
| Suction voltage [V]                 | <16.8                    |
| Release voltage [V]                 | >0.5                     |
| Excitation voltage [V]              | DC24±10%                 |
|                                     |                          |

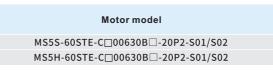
#### Torque feature (T – N curve)

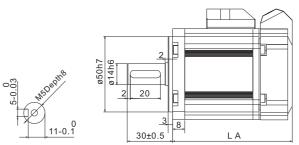


(Unit: mm)


## Ms5 series 200W

#### Motor parameter


| Voltag                 | ge level                  | AC 220V            |                       |                 |  |
|------------------------|---------------------------|--------------------|-----------------------|-----------------|--|
|                        |                           | MS5S               | MS5S-60STE M          |                 |  |
| Motor mode             | el                        | CS/CM00630B        | CS/CM00630BZ          | CS/CM00630E     |  |
|                        |                           |                    | 20P2-S                | 01/S02          |  |
| Motor code             |                           | 5003               | 5803                  | 50C3            |  |
| Rated power            | r [kw]                    |                    | 0                     | .2              |  |
| Rated speed            | l [rpm]                   |                    | 30                    | 00              |  |
| Max speed [            | rpm]                      |                    | 65                    | 00              |  |
| Rated torque [rpm]     |                           | 0.64               |                       |                 |  |
| Max torque [rpm]       |                           | 1.92               |                       |                 |  |
| Rated current [mA]     |                           | 1900               |                       |                 |  |
| Rotor inertia          | [10^-7kg·m <sup>2</sup> ] | 137                | 159                   | 537             |  |
| Inertia type           |                           | Low inertia High i |                       |                 |  |
| Recommended            | l rotor inertia ratio     | Within 30 times    |                       |                 |  |
| Polar logarit          | hm                        | 5                  |                       |                 |  |
| Encoder bit            |                           | 17                 |                       |                 |  |
| Encoder type           |                           | Magnetic           |                       |                 |  |
| Motor insulation class |                           | ClassF(155°C)      |                       |                 |  |
| Protection level       |                           | IP65               |                       |                 |  |
| Using                  | Ambient temperature       |                    | -15°C~                | +40°C           |  |
| environment            | Ambient humidity          | R                  | elative humidity < 90 | 0% (no condensa |  |
|                        |                           |                    |                       |                 |  |


#### Dimension diagram

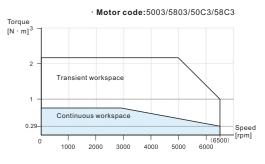
| Matazmadal                    | LA     | \±1        | In anti-a lavel |
|-------------------------------|--------|------------|-----------------|
| Motor model                   | Normal | With brake | Inertia level   |
| MS5S-40STE-C□00330B□-20P1-S01 | 89.5   | 119        | Low inertia     |



#### **Dimension diagram**



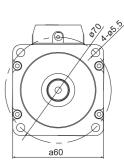



#### Motor parameter and dimension



It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| Static friction torque [N · m] | ≥1.3     |
|--------------------------------|----------|
| Rated power [W]                | 7.2      |
| Suction time [ms]              | <50      |
| Release time [ms]              | <20      |
| Excitation current [A]         | 0.3      |
| Suction voltage [V]            | <16.8    |
| Release voltage [V]            | >1.5     |
| Excitation voltage [V]         | DC24±10% |


#### Torque feature (T – N curve)





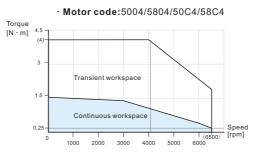
ation)

| LA                | Inertia level |              |
|-------------------|---------------|--------------|
| Normal With brake |               | mertia level |
| 79                | 114           | Low inertia  |
| 91                | 126           | High inertia |



## MS5 series 400W

#### Motor parameter


| Volta                                  | ge level              | AC 220V                                   |              |             |              |
|----------------------------------------|-----------------------|-------------------------------------------|--------------|-------------|--------------|
|                                        |                       | MS5S-60STE                                |              | MS5H-60STE  |              |
| Motor mode                             | I                     | CS/CM01330B                               | CS/CM01330BZ | CS/CM01330B | CS/CM01330BZ |
|                                        |                       |                                           | 20P4-5       | S01/S02     |              |
| Motor code                             |                       | 5004                                      | 5804         | 50C4        | 58C4         |
| Rated powe                             | r [kw]                |                                           | 0.           | .4          |              |
| Rated speed                            | l [rpm]               |                                           | 30           | 00          |              |
| Max speed [rpm]                        |                       | 6500                                      |              |             |              |
| Rated torque [rpm]                     |                       | 1.27                                      |              |             |              |
| Max torque [rpm]                       |                       | 4.45                                      |              |             |              |
| Rated current [mA]                     |                       | 2800                                      |              |             |              |
| Rotor inertia[10^-7kg·m <sup>2</sup> ] |                       | 258                                       | 272          | 648         | 661          |
| Inertia type                           |                       | Low inertia High inertia                  |              |             |              |
| Recommended                            | l rotor inertia ratio | Within 30 times                           |              |             |              |
| Polar logarit                          | hm                    | 5                                         |              |             |              |
| Encoder bit                            |                       | 17                                        |              |             |              |
| Encoder type                           |                       | Magnetic                                  |              |             |              |
| Motor insulation class                 |                       | ClassF(155℃)                              |              |             |              |
| Protection le                          | evel                  | IP65                                      |              |             |              |
| Using                                  | Ambient temperature   | -15°C~+40°C                               |              |             |              |
| environment Ambient humidity           |                       | Relative humidity < 90% (no condensation) |              |             |              |

#### Brake specification

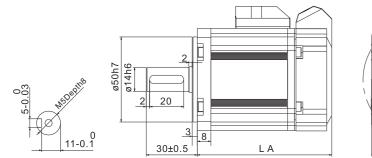
It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating. Static friction torque  $[N \cdot m] \ge 1.3$ 

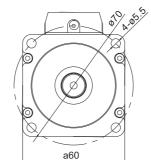
| Rated power [W]        | 1.2      |
|------------------------|----------|
| Suction time [ms]      | <50      |
| Release time [ms]      | <20      |
| Excitation current [A] | 0.3      |
| Suction voltage [V]    | <16.8    |
| Release voltage [V]    | >1.5     |
| Excitation voltage [V] | DC24±10% |

#### Torque feature (T – N curve)



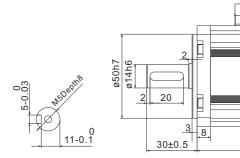
(Unit: mm)


## MS series 400W


#### Motor parameter

| Voltage level             |                     | AC 220V                                  |  |
|---------------------------|---------------------|------------------------------------------|--|
| Motor model               |                     | MS-60STE                                 |  |
|                           |                     | T01330B                                  |  |
|                           |                     | 20P4-D01                                 |  |
| Motor code                |                     | 4004                                     |  |
| Rated power [kv           | v]                  | 0.4                                      |  |
| Rated speed [rp           | m]                  | 3000                                     |  |
| Max speed [rpm]           |                     | 5000                                     |  |
| Rated torque [rpm]        |                     | 1.27                                     |  |
| Max torque [rpm]          |                     | 4.45                                     |  |
| Rated current [mA]        |                     | 2200                                     |  |
| Rotor inertia[10^-7kg·m2] |                     | 343                                      |  |
| Inertia type              |                     | -                                        |  |
| Recommended               | rotor inertia ratio | Within 30 times                          |  |
| Polar logarithm           |                     | 5                                        |  |
| Encoder bit               |                     | 17                                       |  |
| Encoder type              |                     | Optical                                  |  |
| Motor insulation class    |                     | ClassF(155°C)                            |  |
| Protection level          |                     | IP65                                     |  |
| Using                     | Ambient temperature | -15°C~+40°C                              |  |
| environment               | Ambient humidity    | Relative humidity < 90% (no condensation |  |
|                           |                     |                                          |  |

#### **Dimension diagram**

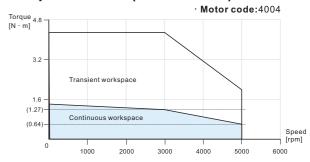

| Motor model                       | LA±1   |            | Inertia level |
|-----------------------------------|--------|------------|---------------|
| Motor model                       | Normal | With brake | mertialever   |
| MS5S-60STE-C_01330B20P4-S01/S02   | 99     | 134        | Low inertia   |
| MS5H-60STE-C□01330B□-20P4-S01/S02 | 111    | 146        | High inertia  |



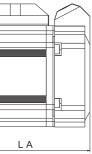


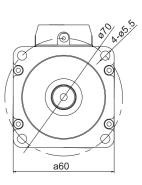
#### **Dimension diagram**






#### **Brake specification**


It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.


| Static friction torque [N · m] | ≥1.3     |
|--------------------------------|----------|
| Rated power [W]                | 7.2      |
| Suction time [ms]              | <50      |
| Release time [ms]              | <20      |
| Excitation current [A]         | 0.3      |
| Suction voltage [V]            | <16.8    |
| Release voltage [V]            | >1.5     |
| Excitation voltage [V]         | DC24±10% |
|                                |          |

#### Torque feature (T – N curve)



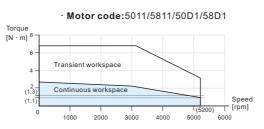
| LA                | Inertia level |             |
|-------------------|---------------|-------------|
| Normal With brake |               | mentialevei |
| 145               | 189           | /           |





## MS5 series 750W

#### Motor parameter


| Voltag                                 | ge level              | AC 220V                  |                                           |             |              |  |
|----------------------------------------|-----------------------|--------------------------|-------------------------------------------|-------------|--------------|--|
|                                        |                       | MS5S-80STE               |                                           | MS5H-80STE  |              |  |
| Motor mode                             | I                     | CS/CM02430B              | CS/CM02430BZ                              | CS/CM02430B | CS/CM02430BZ |  |
|                                        |                       |                          | 20P7-9                                    | S01/S02     |              |  |
| Motor code                             |                       | 5011                     | 5811                                      | 50D1        | 58D1         |  |
| Rated powe                             | r [kw]                |                          | 0.                                        | 75          |              |  |
| Rated speed                            | d [rpm]               |                          | 30                                        | 00          |              |  |
| Max speed [                            | rpm]                  |                          | 52                                        | 00          |              |  |
| Rated torqu                            | e [rpm]               | 2.39                     |                                           |             |              |  |
| Max torque                             | [rpm]                 | 7.17                     |                                           |             |              |  |
| Rated curre                            | nt [mA]               | 4000                     |                                           |             |              |  |
| Rotor inertia[10^-7kg·m <sup>2</sup> ] |                       | 902                      | 1000                                      | 1655        | 1659         |  |
| Inertia type                           |                       | Low inertia High inertia |                                           |             |              |  |
| Recommended                            | l rotor inertia ratio | Within 30 times          |                                           |             |              |  |
| Polar logarit                          | thm                   | 5                        |                                           |             |              |  |
| Encoder bit                            |                       | 17                       |                                           |             |              |  |
| Encoder type                           |                       | Magnetic                 |                                           |             |              |  |
| Motor insulation class                 |                       | ClassF(155°C)            |                                           |             |              |  |
| Protection level                       |                       | IP65                     |                                           |             |              |  |
| Using                                  | Ambient temperature   |                          | -15°C~+40°C                               |             |              |  |
| environment                            | Ambient humidity      | R                        | Relative humidity < 90% (no condensation) |             |              |  |

## Brake specification

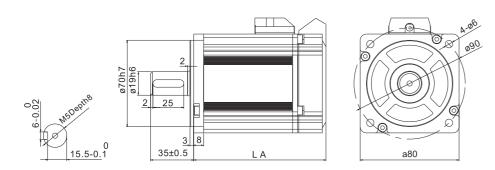
It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| Static friction torque [N $\cdot$ m] | ≥3.2     |
|--------------------------------------|----------|
| Rated power [W]                      | 11.5     |
| Suction time [ms]                    | <60      |
| Release time [ms]                    | <40      |
| Excitation current [A]               | 0.47     |
| Suction voltage [V]                  | <16.8    |
| Release voltage [V]                  | >1.5     |
| Excitation voltage [V]               | DC24±10% |
|                                      |          |

### Torque feature (T – N curve)



(Unit: mm)


## Motor parameter

MS series 750W

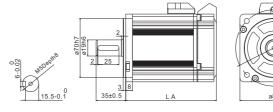
| Voltag                                 | e level             |         |
|----------------------------------------|---------------------|---------|
| Motor model                            |                     | T02430B |
| Motor code                             |                     | 4011    |
| Rated power [kw                        | ]                   |         |
| Rated speed [rp                        | m]                  | 3000    |
| Max speed [rpm]                        | l                   | 4000    |
| Rated torque [rp                       | m]                  | 2.39    |
| Max torque [rpm                        | ]                   | 7.17    |
| Rated current [mA]                     |                     | 3200    |
| Rotor inertia[10^-7kg·m <sup>2</sup> ] |                     | 1023    |
| Inertia type                           |                     |         |
| Recommended rotor inertia ratio        |                     |         |
| Polar logarithm                        |                     |         |
| Encoder bit                            |                     |         |
| Encoder type                           |                     |         |
| Motor insulation class                 |                     |         |
| Protection level                       |                     |         |
| Using                                  | Ambient temperature |         |
| environment                            | Ambient humidity    |         |
|                                        |                     |         |

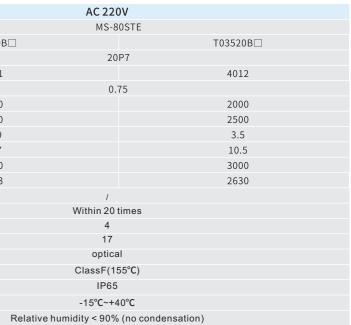
#### Dimension diagram

| Madaamadal                       | LA     | In anti-a lavval |               |
|----------------------------------|--------|------------------|---------------|
| Motor model                      | Normal | With brake       | Inertia level |
| MS5S-80STE-C02430B-20P7-S01/S02  | 107    | 144              | Low inertia   |
| MS5H-80STE-C02430B0-20P7-S01/S02 | 119    | 156              | High inertia  |

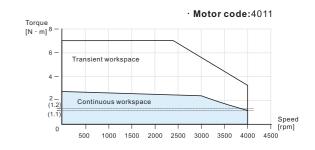


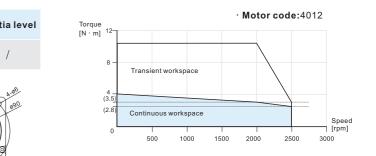
#### **Brake specification**


It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.


| g-                             |          |  |  |
|--------------------------------|----------|--|--|
| Static friction torque [N · m] | ≥3.2     |  |  |
| Rated power [W]                | 11.5     |  |  |
| Suction time [ms]              | <60      |  |  |
| Release time [ms]              | <40      |  |  |
| Excitation current [A]         | 0.47     |  |  |
| Suction voltage [V]            | <16.8    |  |  |
| Release voltage [V]            | >1.5     |  |  |
| Excitation voltage [V]         | DC24±10% |  |  |
|                                |          |  |  |

#### **Dimension diagram**


(Ur


| LA±    | Inerti        |         |
|--------|---------------|---------|
| Normal | With brake    | merti   |
| 150    | 199           |         |
| 179    | 219           |         |
|        | Normal<br>150 | 150 199 |





#### Torque feature (T – N curve)

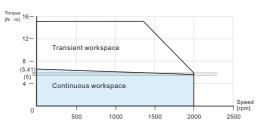




## MS5G series 850W

#### Motor parameter

| Voltage level             |                     | AC 220V                                   |              |          |           |  |  |
|---------------------------|---------------------|-------------------------------------------|--------------|----------|-----------|--|--|
|                           |                     | MS5G-130STE                               |              |          |           |  |  |
| Motor model               |                     | CS/CM05415B                               | CS/CM05415BZ | TL05415B | TL05415BZ |  |  |
|                           |                     |                                           | 20P8-S01     |          |           |  |  |
| Motor code                |                     | 5072                                      | 5872         | 9072     | 9872      |  |  |
| Rated power [             | kw]                 |                                           | 0.85         |          |           |  |  |
| Rated speed [             | rpm]                |                                           | 1500         |          |           |  |  |
| Max speed [rp             | m]                  |                                           | 2000         |          |           |  |  |
| Rated torque              | [rpm]               | 5.41                                      |              |          |           |  |  |
| Max torque [rpm]          |                     | 15.15                                     |              |          |           |  |  |
| Rated current [mA]        |                     | 4200                                      |              |          |           |  |  |
| Rotor inertia[10^-7kg·m2] |                     | 8480 9717 8480 9717                       |              |          |           |  |  |
| Inertia type              |                     | Medium inertia                            |              |          |           |  |  |
| Recommended               | rotor inertia ratio | Within 10 times                           |              |          |           |  |  |
| Polar logarith            | n                   | 5                                         |              |          |           |  |  |
| Encoder bit               |                     | 17                                        |              | 23       |           |  |  |
| Encoder type              |                     | Magnetic optical                          |              |          | ical      |  |  |
| Motor insulation class    |                     | ClassF(155℃)                              |              |          |           |  |  |
| Protection level          |                     | IP65                                      |              |          |           |  |  |
| Using environment         | Ambient temperature |                                           | -15°C~+40°   | с        |           |  |  |
|                           | Ambient humidity    | Relative humidity < 90% (no condensation) |              |          |           |  |  |


#### **Brake specification**

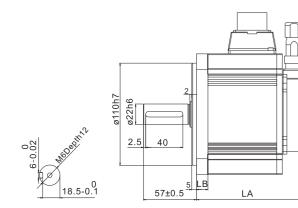
It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

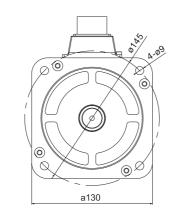
| 0                                    | 0        |
|--------------------------------------|----------|
| Static friction torque [N $\cdot$ m] | ≥15      |
| Rated power [W]                      | 25       |
| Suction time [ms]                    | <100     |
| Release time [ms]                    | <60      |
| Excitation current [A]               | 1        |
| Suction voltage [V]                  | <16.8    |
| Release voltage [V]                  | >1.5     |
| Excitation voltage [V]               | DC24±10% |

#### Torque feature (T – N curve)

#### · Motor code:5072/5872/9072/9872



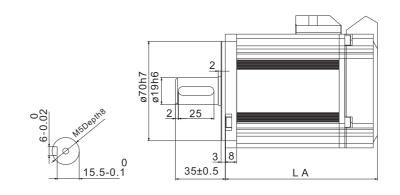

## MS5 series 1.0kW


#### Motor parameter

| Voltage level             |                     | AC 220V                |                      |  |
|---------------------------|---------------------|------------------------|----------------------|--|
|                           |                     | MS5S-80STE             | MS5H-80STE           |  |
| Motor model               |                     | CS/CM03230B            |                      |  |
|                           |                     | 21P0-S01               |                      |  |
| Motor code                |                     | 5012                   | 50D2                 |  |
| Rated power [kv           | v]                  |                        | 1                    |  |
| Rated speed [rp           | m]                  | 30                     | 000                  |  |
| Max speed [rpm            | ]                   | 40                     | 000                  |  |
| Rated torque [rp          | om]                 | 3.                     | .18                  |  |
| Max torque [rpm           | ]                   | 8                      |                      |  |
| Rated current [n          | nA]                 | 4000                   |                      |  |
| Rotor inertia[10^-7kg·m2] |                     | 1286 2021              |                      |  |
| Inertia type              |                     |                        | /                    |  |
| Recommended               | rotor inertia ratio | Within 2               | 20 times             |  |
| Polar logarithm           |                     | 5                      |                      |  |
| Encoder bit               |                     | 17                     |                      |  |
| Encoder type              |                     | Magnetic               |                      |  |
| Motor insulation class    |                     | ClassF(155°C)          |                      |  |
| Protection level          |                     | IP65                   |                      |  |
| Llaing onvironment        | Ambient temperature | -15°C^                 | -+40°C               |  |
| Using environment         | Ambient humidity    | Relative humidity < 90 | 0% (no condensation) |  |
|                           |                     |                        |                      |  |

#### Dimension diagram

| Motor model                    | LA±1   |            | LP   | Inertia level  |
|--------------------------------|--------|------------|------|----------------|
| Motor model                    | Normal | With brake | LB   | inertia level  |
| MS5G-130STE-C□05415B□-20P8-S01 | 117.5  | 147.5      | 12.5 | Medium inertia |
| MS5G-130STE-TL05415B□-20P8-S01 | 134.5  | 164.5      | 12.5 | Mediummertia   |

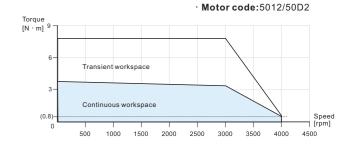


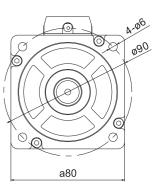



#### (Unit: mm)

#### **Dimension diagram**

| Motor model                 | LA     | Inertia level |               |
|-----------------------------|--------|---------------|---------------|
| Motor model                 | Normal | With brake    | Inertia level |
| MS5S-80STE-C_03230B21P0-S01 | 128    | 165           | Low inertia   |
| MS5H-80STE-C_03230B21P0-S01 | 140    | 177           | High inertia  |





#### Brake specification

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| -                                    |          |
|--------------------------------------|----------|
| Static friction torque [N $\cdot$ m] | ≥3.2     |
| Rated power [W]                      | 11.5     |
| Suction time [ms]                    | <60      |
| Release time [ms]                    | <40      |
| Excitation current [A]               | 0.47     |
| Suction voltage [V]                  | <16.8    |
| Release voltage [V]                  | >1.5     |
| Excitation voltage [V]               | DC24±10% |
|                                      |          |

#### Torque feature (T – N curve)





## MS5 series 1.0kW

#### Motor parameter

| Voltage level             |                     | AC 220V                                   |          |  |
|---------------------------|---------------------|-------------------------------------------|----------|--|
|                           |                     | MS5S-110STE                               |          |  |
| Motor model               |                     | CS/CM03230B                               | TL03230B |  |
|                           |                     | 21P0-S01                                  |          |  |
| Motor code                |                     | 5033                                      | 9033     |  |
| Rated power [kv           | v]                  | :                                         | l        |  |
| Rated speed [rp           | m]                  | 30                                        | 00       |  |
| Max speed [rpm            | ]                   | 60                                        | 00       |  |
| Rated torque [rpm]        |                     | 3.18                                      |          |  |
| Max torque [rpm]          |                     | 7.95                                      |          |  |
| Rated current [mA]        |                     | 7500                                      |          |  |
| Rotor inertia[10^-7kg·m2] |                     | 28                                        | 69       |  |
| Inertia type              |                     | Low inertia                               |          |  |
| Recommended               | rotor inertia ratio | Within 15 times                           |          |  |
| Polar logarithm           |                     | 5                                         |          |  |
| Encoder bit               |                     | 17                                        | 23       |  |
| Encoder type              |                     | Magnetic optical                          |          |  |
| Motor insulation class    |                     | ClassF(155°C)                             |          |  |
| Protection level          |                     | IP65                                      |          |  |
|                           | Ambient temperature | -15°C~+40°C                               |          |  |
| Using environment         | Ambient humidity    | Relative humidity < 90% (no condensation) |          |  |

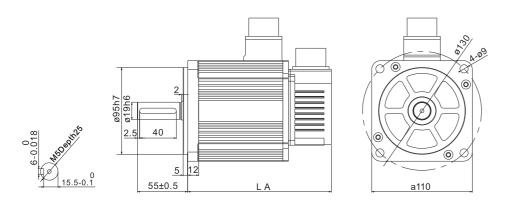
#### **Brake specification**

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| Static friction torque [N $\cdot$ m] | ≥8       |
|--------------------------------------|----------|
| Rated power [W]                      | 14.4     |
| Suction time [ms]                    | <80      |
| Release time [ms]                    | <40      |
| Excitation current [A]               | 0.6      |
| Suction voltage [V]                  | <16.8    |
| Release voltage [V]                  | >1.5     |
| Excitation voltage [V]               | DC24±10% |

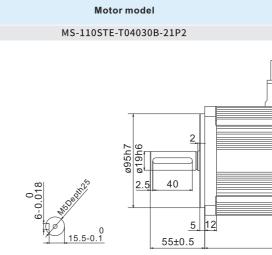
#### Torque feature (T – N curve)

#### 


# MS series 1.2kW

#### Motor parameter

| Voltag                    | elevel              | AC 220V                                   |  |
|---------------------------|---------------------|-------------------------------------------|--|
|                           |                     | MS-110STE                                 |  |
| Motor model               |                     | T04030B                                   |  |
|                           |                     | 21P2                                      |  |
| Motor code                |                     | 4031                                      |  |
| Rated power [kv           | v]                  | 1.2                                       |  |
| Rated speed [rp           | m]                  | 3000                                      |  |
| Max speed [rpm            | ]                   | 3500                                      |  |
| Rated torque [rp          | om]                 | 4                                         |  |
| Max torque [rpm]          |                     | 12                                        |  |
| Rated current [mA]        |                     | 5000                                      |  |
| Rotor inertia[10^-7kg·m2] |                     | 5400                                      |  |
| Inertia type              |                     | /                                         |  |
| Recommended               | rotor inertia ratio | Within 10 times                           |  |
| Polar logarithm           |                     | 4                                         |  |
| Encoder bit               |                     | 17                                        |  |
| Encoder type              |                     | optical                                   |  |
| Motor insulation class    |                     | ClassF(155°C)                             |  |
| Protection level          |                     | IP65                                      |  |
| Using environment         | Ambient temperature | -15°C~+40°C                               |  |
| ooning on the finite fit  | Ambient humidity    | Relative humidity < 90% (no condensation) |  |
|                           |                     |                                           |  |


#### Dimension diagram

| Motor model                    | L      | Inertia level |              |
|--------------------------------|--------|---------------|--------------|
| Motor moder                    | Normal | With brake    | mentia lever |
| MS5S-110STE-C□03230B□-21P0-S01 | 157    | 205           | Low inertia  |
| MS5S-110STE-TL03230B□-21P0-S01 | 131    | 205           | Low mentia   |



#### (Unit: mm)

#### **Dimension diagram**



#### **Brake specification**

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| Static friction torque [N · m] | ≥8       |
|--------------------------------|----------|
| Rated power [W]                | 14.4     |
| Suction time [ms]              | <80      |
| Release time [ms]              | <40      |
| Excitation current [A]         | 0.6      |
| Suction voltage [V]            | <16.8    |
| Release voltage [V]            | >1.5     |
| Excitation voltage [V]         | DC24±10% |
|                                |          |

#### Torque feature (T – N curve)



| LA±1<br>Normal With brake<br>157 205 / |        |            |               |
|----------------------------------------|--------|------------|---------------|
| Normal With brake<br>157 205 /         | LA±1   |            |               |
|                                        | Normal | With brake | Inertia level |
|                                        | 157    | 205        | /             |
| L A a110                               |        |            |               |

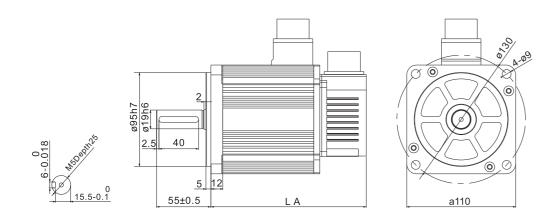
## MS5 series 1.5kW

#### Motor parameter

| Voltag                    | e level             | AC 220V                                   |         |  |
|---------------------------|---------------------|-------------------------------------------|---------|--|
|                           |                     | MS5S-110STE                               |         |  |
| Motor model               |                     | CS/CM04830B TL04830B                      |         |  |
|                           |                     | 21P5-S01                                  |         |  |
| Motor code                |                     | 5034                                      | 9034    |  |
| Rated power [kv           | v]                  | 1.                                        | .5      |  |
| Rated speed [rp           | m]                  | 30                                        | 00      |  |
| Max speed [rpm            | ]                   | 45                                        | 00      |  |
| Rated torque [rpm]        |                     | 4.77                                      |         |  |
| Max torque [rpm]          |                     | 9.54                                      |         |  |
| Rated current [mA]        |                     | 7500                                      |         |  |
| Rotor inertia[10^-7kg·m2] |                     | 33                                        | 60      |  |
| Inertia type              |                     | Low in                                    | ertia   |  |
| Recommended               | rotor inertia ratio | Within 15 times                           |         |  |
| Polar logarithm           |                     | 5                                         |         |  |
| Encoder bit               |                     | 17                                        | 23      |  |
| Encoder type              |                     | Magnetic                                  | optical |  |
| Motor insulation class    |                     | ClassF(155℃)                              |         |  |
| Protection level          |                     | IP65                                      |         |  |
|                           | Ambient temperature | -15°C~-                                   | +40°C   |  |
| Using environment         | Ambient humidity    | Relative humidity < 90% (no condensation) |         |  |

#### **Brake specification**

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.


| <br>to annot be used for braking when the motor is rotating. |          |  |  |  |
|--------------------------------------------------------------|----------|--|--|--|
| Static friction torque [N $\cdot$ m]                         | ≥8       |  |  |  |
| Rated power [W]                                              | 14.4     |  |  |  |
| Suction time [ms]                                            | <80      |  |  |  |
| Release time [ms]                                            | <40      |  |  |  |
| Excitation current [A]                                       | 0.6      |  |  |  |
| Suction voltage [V]                                          | <16.8    |  |  |  |
| Release voltage [V]                                          | >1.5     |  |  |  |
| Excitation voltage [V]                                       | DC24±10% |  |  |  |
|                                                              |          |  |  |  |

#### Torque feature (T – N curve)

# • Motor code:5034/9034

#### Dimension diagram

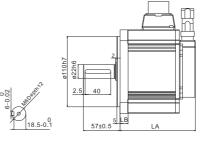
| Motor model                    | LA     | Inertia level |             |
|--------------------------------|--------|---------------|-------------|
| Motor model                    | Normal | With brake    | mentialevei |
| MS5S-110STE-C□04830B□-21P5-S01 | 166    | 214           | Lowinortio  |
| MS5S-110STE-TL04830B□-21P5-S01 | 100    | 214           | Low inertia |



## MS5 series 1.5kW

#### Motor parameter

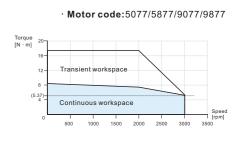
| Voltag                 | ge level            | AC 220V                                   |           |          |             |             |             |  |
|------------------------|---------------------|-------------------------------------------|-----------|----------|-------------|-------------|-------------|--|
|                        |                     | MS5G-130STE                               |           |          |             |             |             |  |
| Motor model            |                     | CS07220B                                  | CS07220BZ | TL07220B | TL07220BZ   | CS/CM06025B | CS/CM10015B |  |
|                        |                     |                                           | 21P       | 5-S01    |             |             |             |  |
| Motor code             |                     | 5077                                      | 5877      | 9077     | 9877        | 5078        | 5079        |  |
| Rated power [kw]       |                     |                                           | 1.5       |          |             | 1.5         |             |  |
| Rated speed [rpm       | n]                  |                                           | 2000      |          |             | 2500        | 1500        |  |
| Max speed [rpm]        |                     |                                           | 3000      |          |             | 3000        | 2500        |  |
| Rated torque [rpn      | n]                  |                                           | 7.16      |          |             | 6           | 10          |  |
| Max torque [rpm]       |                     |                                           | 17.9      |          |             | 15 25       |             |  |
| Rated current [mA]     |                     |                                           | 7500      |          |             | 7500        |             |  |
| Rotor inertia[10^-     | -7kg·m²]            | 11780 13130 1178                          |           | 11780    | 13130       | 9440        | 14400       |  |
| Inertia type           |                     | Medium inertia                            |           |          |             |             |             |  |
| Recommended ro         | otor inertia ratio  |                                           |           | With     | in 10 times |             |             |  |
| Polar logarithm        |                     |                                           |           |          | 5           |             |             |  |
| Encoder bit            |                     | 17 23 17                                  |           |          | 17          |             |             |  |
| Encoder type           | coder type Magnetic |                                           |           | tical    | Magnetic    |             |             |  |
| Motor insulation class |                     | ClassF(155℃)                              |           |          |             |             |             |  |
| Protection level       |                     | IP65                                      |           |          |             |             |             |  |
| Using environment      | Ambient temperature | -15°C~+40°C                               |           |          |             |             |             |  |
| Using environment      | Ambient humidity    | Relative humidity < 90% (no condensation) |           |          |             |             |             |  |

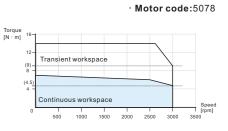

#### **Brake specification**

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| <b>J</b>                       | 5        |
|--------------------------------|----------|
| Static friction torque [N · m] | ≥8       |
| Rated power [W]                | 14.4     |
| Suction time [ms]              | <80      |
| Release time [ms]              | <40      |
| Excitation current [A]         | 0.6      |
| Suction voltage [V]            | <16.8    |
| Release voltage [V]            | >1.5     |
| Excitation voltage [V]         | DC24±10% |

#### **Dimension diagram**


| Motor model                      |       | LA±1       |      |    |
|----------------------------------|-------|------------|------|----|
|                                  |       | With brake | LB   | In |
| MS5G-130STE-C□07220B□-21P5-S01   | 132.5 | 162.5      |      |    |
| MS5G-130STE-TL07220B□-21P5-S01   | 149.5 | 179.5      | 12.5 |    |
| MS5G-130STE-CS/CM06025B-21P5-S01 | 122   | /          | 12.5 |    |
| MS5G-130STE-CS/CM10015B-21P5-S01 | 145   | /          |      |    |






(Unit: mm)

### Torque feature (T – N curve)







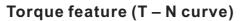




Medium inertia



## MS5 series 1.8kW


#### **Motor parameter**

| Voltag                 | e level             | AC 220V                                   |          |  |
|------------------------|---------------------|-------------------------------------------|----------|--|
|                        |                     | MS5S-110STE                               |          |  |
| Motor model            |                     | CS/CM06030B                               | TL06030B |  |
|                        |                     | 21P8                                      | -S01     |  |
| Motor code             |                     | 5037                                      | 9037     |  |
| Rated power [kv        | v]                  | 1.                                        | 8        |  |
| Rated speed [rp        | m]                  | 300                                       | 00       |  |
| Max speed [rpm         | ]                   | 450                                       | 00       |  |
| Rated torque [rp       | om]                 | 6                                         |          |  |
| Max torque [rpm]       |                     | 12                                        |          |  |
| Rated current [r       | nA]                 | 9500 7500                                 |          |  |
| Rotor inertia[10       | ^-7kg·m²]           | 4170                                      |          |  |
| Inertia type           |                     | Low in                                    | ertia    |  |
| Recommended            | rotor inertia ratio | Within 10 times                           |          |  |
| Polar logarithm        |                     | 5                                         |          |  |
| Encoder bit            |                     | 17                                        | 23       |  |
| Encoder type           |                     | Magnetic optical                          |          |  |
| Motor insulation class |                     | ClassF(155℃)                              |          |  |
| Protection level       |                     | IP65                                      |          |  |
| Using environment      | Ambient temperature | -15°C~+40°C                               |          |  |
| Ambient humidity       |                     | Relative humidity < 90% (no condensation) |          |  |

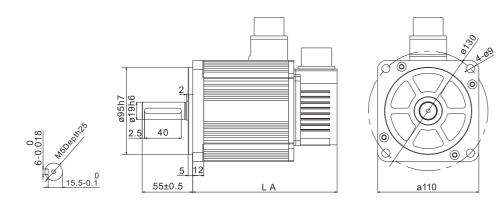
#### **Brake specification**

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating

| IL C | it cannot be used for braking when the motor is rotating. |          |  |  |  |  |
|------|-----------------------------------------------------------|----------|--|--|--|--|
|      | Static friction torque [N $\cdot$ m]                      | ≥8       |  |  |  |  |
|      | Rated power [W]                                           | 14.4     |  |  |  |  |
|      | Suction time [ms]                                         | <80      |  |  |  |  |
|      | Release time [ms]                                         | <40      |  |  |  |  |
|      | Excitation current [A]                                    | 0.6      |  |  |  |  |
|      | Suction voltage [V]                                       | <16.8    |  |  |  |  |
|      | Release voltage [V]                                       | >1.5     |  |  |  |  |
|      | Excitation voltage [V]                                    | DC24±10% |  |  |  |  |
|      |                                                           |          |  |  |  |  |



#### • Motor code:5037/9037 Torque [N · m] 10.5 Transient workspace 7 3.5 Continuous workspace Sneed [rpm] 1000 2000 3000 4000 5000

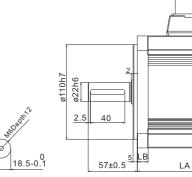

## MS5 series 1.8kW

#### Motor parameter

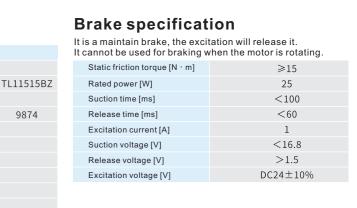
| Voltag                 | ge level            | AC 220V                                   |              |          |      |  |  |  |
|------------------------|---------------------|-------------------------------------------|--------------|----------|------|--|--|--|
|                        |                     |                                           | MS5G-130STE  |          |      |  |  |  |
| Motor model            |                     | CS/CM11515B                               | CS/CM11515BZ | TL11515B | TL11 |  |  |  |
|                        |                     |                                           | 21P8-S01     |          |      |  |  |  |
| Motor code             |                     | 5074 5874 9074                            |              |          |      |  |  |  |
| Rated power            | [kw]                |                                           | 1.8          |          |      |  |  |  |
| Rated speed            | [rpm]               |                                           | 1500         |          |      |  |  |  |
| Max speed [rp          | om]                 |                                           | 2000         |          |      |  |  |  |
| Rated torque           | [rpm]               |                                           | 11.5         |          |      |  |  |  |
| Max torque [rpm]       |                     | 23                                        |              |          |      |  |  |  |
| Rated current          | t [mA]              | 9000                                      |              |          |      |  |  |  |
| Rotor inertia[         | 10^-7kg·m²]         | 17710                                     | 19060        | 17710    | 19   |  |  |  |
| nertia type            |                     |                                           | Medium iner  | tia      |      |  |  |  |
| Recommende             | ed rotor inertia ra | atio Within 10 times                      |              |          |      |  |  |  |
| Polar logarith         | m                   |                                           | 5            |          |      |  |  |  |
| Encoder bit            |                     | 17                                        |              |          | 23   |  |  |  |
| Encoder type           |                     | Magnetic optical                          |              |          |      |  |  |  |
| Motor insulation class |                     | ClassF(155°C)                             |              |          |      |  |  |  |
| Protection level       |                     | IP65                                      |              |          |      |  |  |  |
| Using                  | Ambient temperature |                                           | -15°C~+40°   | С        |      |  |  |  |
| environment            | Ambient humidity    | Relative humidity < 90% (no condensation) |              |          |      |  |  |  |
|                        |                     |                                           |              |          |      |  |  |  |

#### **Dimension diagram**

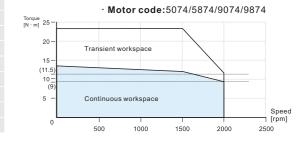
| Motor model                    | LA±1   |            | Inertia level |  |
|--------------------------------|--------|------------|---------------|--|
| Motor moder                    | Normal | With brake | mertialever   |  |
| MS5S-110STE-C□06030B□-21P8-S01 | 181    | 229        | Low inertia   |  |
| MS5S-110STE-TL06030B□-21P8-S01 | 101    | 229        | Low mentia    |  |

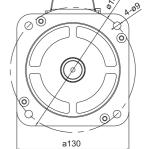



#### (Unit: mm)


#### **Dimension diagram**

| Motor model                    | LA±1   |            | LB   | Inertia level |  |
|--------------------------------|--------|------------|------|---------------|--|
| Motor model                    | Normal | With brake | LD   | inertia level |  |
| MS5G-130STE-C□11515B□-21P8-S01 | 159.5  | 189.5      | 12.5 | Low inertia   |  |
| MS5G-130STE-TL11515B□-21P8-S01 | 176.5  | 206.5      | 12.5 | Low mentia    |  |
|                                |        |            |      | 9             |  |


19060




#### Motor parameter and dimension



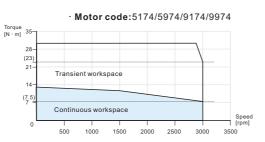
#### Torque feature (T – N curve)





## MS5 series 1.8kW

#### Motor parameter


| Voltag                 | ge level            | AC 380V                                   |              |          |           |  |
|------------------------|---------------------|-------------------------------------------|--------------|----------|-----------|--|
|                        |                     | MS5G-130STE                               |              |          |           |  |
| Motor model            |                     | CS/CM11515B                               | CS/CM11515BZ | TL11515B | TL11515BZ |  |
|                        |                     |                                           | 41P8-S01     |          |           |  |
| Motor code             |                     | 5174                                      | 5974         | 9174     | 9974      |  |
| Rated power [          | kw]                 |                                           | 1.8          |          |           |  |
| Rated speed [          | rpm]                |                                           | 1500         |          |           |  |
| Max speed [rp          | m]                  |                                           | 3000         |          |           |  |
| Rated torque           | [rpm]               | 11.5                                      |              |          |           |  |
| Max torque [rpm]       |                     | 28.75                                     |              |          |           |  |
| Rated current          | [mA]                | 6800                                      |              |          |           |  |
| Rotor inertia[]        | l0^-7kg·m²]         | 17710                                     | 18974        | 17710    | 18974     |  |
| Inertia type           |                     | Medium inertia                            |              |          |           |  |
| Recommended r          | otor inertia ratio  | Within 10 times                           |              |          |           |  |
| Polar logarith         | m                   | 5                                         |              |          |           |  |
| Encoder bit            |                     | 1                                         | .7           | 23       |           |  |
| Encoder type           |                     | Magnetic optical                          |              |          |           |  |
| Motor insulation class |                     | ClassF(155℃)                              |              |          |           |  |
| Protection level       |                     | IP65                                      |              |          |           |  |
| Using                  | Ambient temperature | -15°C~+40°C                               |              |          |           |  |
| environment            | Ambient humidity    | Relative humidity < 90% (no condensation) |              |          |           |  |

#### **Brake specification**

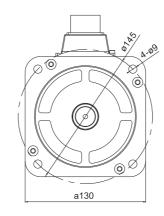
It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| Static friction torque [N · m] | ≥15      |
|--------------------------------|----------|
| Rated power [W]                | 25       |
| Suction time [ms]              | <100     |
| Release time [ms]              | <60      |
| Excitation current [A]         | 1        |
| Suction voltage [V]            | <16.8    |
| Release voltage [V]            | >1.5     |
| Excitation voltage [V]         | DC24±10% |

#### Torque feature (T – N curve)



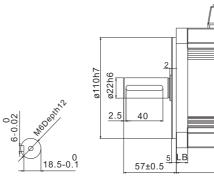

## MS5 series 2.3kW


#### Motor parameter

| Voltage                | elevel              | AC 220V                                   |              |          |           |  |
|------------------------|---------------------|-------------------------------------------|--------------|----------|-----------|--|
|                        |                     | MS5G-130STE                               |              |          |           |  |
| Motor model            |                     | CS/CM14615B                               | CS/CM14615BZ | TL14615B | TL14615BZ |  |
|                        |                     |                                           | 22P3-S0      | 1        |           |  |
| Motor code             |                     | 5075                                      | 5875         | 9075     | 9875      |  |
| Rated power [          | kw]                 |                                           | 2.3          |          |           |  |
| Rated speed [          | rpm]                |                                           | 1500         |          |           |  |
| Max speed [rp          | m]                  |                                           | 2000         |          |           |  |
| Rated torque           | [rpm]               |                                           | 14.6         |          |           |  |
| Max torque [rpm]       |                     | 29.2                                      |              |          |           |  |
| Rated current          | [mA]                | 9000                                      |              |          |           |  |
| Rotor inertia[]        | l0^-7kg·m²]         | 22324                                     | 23560        | 22324    | 23560     |  |
| Inertia type           |                     | Medium inertia                            |              |          |           |  |
| Recommended r          | otor inertia ratio  | Within 10 times                           |              |          |           |  |
| Polar logarith         | m                   | 5                                         |              |          |           |  |
| Encoder bit            |                     | 1                                         | .7           | 23       |           |  |
| Encoder type           |                     | Magnetic optical                          |              |          |           |  |
| Motor insulation class |                     | ClassF(155°C)                             |              |          |           |  |
| Protection level       |                     | IP65                                      |              |          |           |  |
| Using                  | Ambient temperature |                                           | -15°C~+40°   | с        |           |  |
| environment            | Ambient humidity    | Relative humidity < 90% (no condensation) |              |          |           |  |

#### **Dimension diagram**

| Motor model                    | LA±1   |            |      | Inertia level  |  |
|--------------------------------|--------|------------|------|----------------|--|
| Motor model                    | Normal | With brake | LB   | inertia level  |  |
| MS5G-130STE-C□11515B□-41P8-S01 | 159.5  | 189.5      | 12.5 | Medium inertia |  |
| MS5G-130STE-TL11515B□-41P8-S01 | 176.5  | 206.5      | 12.5 | Weuluin mertia |  |





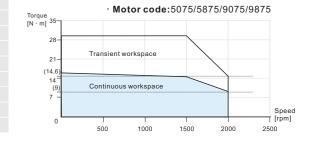

(Unit: mm)

#### **Dimension diagram**

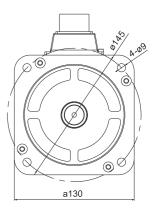
| Motor model                    | LA±1   |            | LD   | Inertia level  |  |
|--------------------------------|--------|------------|------|----------------|--|
| Motor model                    | Normal | With brake | LB   | inertia level  |  |
| MS5G-130STE-C 14615B -22P3-S01 | 180.5  | 210.5      | 12.5 | Medium inertia |  |
| MS5G-130STE-TL14615B□-22P3-S01 | 197.5  | 227.5      | 12.5 | Medium mertia  |  |



#### Motor parameter and dimension


#### Brake specification

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.


| Static friction torque [N $\cdot$ m] | ≥15      |
|--------------------------------------|----------|
| Rated power [W]                      | 25       |
| Suction time [ms]                    | <100     |
| Release time [ms]                    | <60      |
| Excitation current [A]               | 1        |
| Suction voltage [V]                  | <16.8    |
| Release voltage [V]                  | >1.5     |
| Excitation voltage [V]               | DC24±10% |

#### 23560

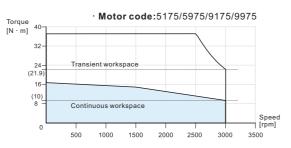
#### Torque feature (T – N curve)







## MS5 series 2.3kW


#### Motor parameter

| Voltor                 |                     |                                           | AC 2001      | ,        |           |  |
|------------------------|---------------------|-------------------------------------------|--------------|----------|-----------|--|
| Voltag                 | elevei              |                                           | AC 380V      |          |           |  |
|                        |                     | MS5G-130STE                               |              |          |           |  |
| Motor model            |                     | CS/CM14615B                               | CS/CM14615BZ | TL14615B | TL14615BZ |  |
|                        |                     |                                           | 42P3-S01     |          |           |  |
| Motor code             |                     | 5175                                      | 5975         | 9175     | 9975      |  |
| Rated power            | [kw]                |                                           | 2.3          |          |           |  |
| Rated speed            | [rpm]               |                                           | 1500         |          |           |  |
| Max speed [r           | om]                 |                                           | 3000         |          |           |  |
| Rated torque           | [rpm]               |                                           | 14.6         |          |           |  |
| Max torque [r          | pm]                 | 36.5                                      |              |          |           |  |
| Rated curren           | t [mA]              | 8500                                      |              |          |           |  |
| Rotor inertia[         | 10^-7kg·m²]         | 22320                                     | 23560        | 22320    | 23560     |  |
| Inertia type           |                     | Medium inertia                            |              |          |           |  |
| Recommended r          | otor inertia ratio  | Within 10 times                           |              |          |           |  |
| Polar logarith         | m                   | 5                                         |              |          |           |  |
| Encoder bit            |                     | 1                                         | 7            | 23       |           |  |
| Encoder type           |                     | Magnetic optical                          |              |          |           |  |
| Motor insulation class |                     | ClassF(155°C)                             |              |          |           |  |
| Protection level       |                     | IP65                                      |              |          |           |  |
| Using                  | Ambient temperature | -15°C~+40°C                               |              |          |           |  |
| environment            | Ambient humidity    | Relative humidity < 90% (no condensation) |              |          |           |  |

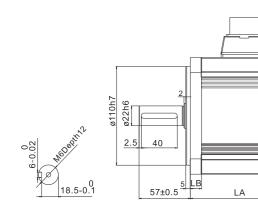
#### **Brake specification**

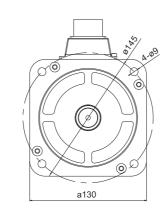
It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating. Static friction torque [N · m] ≥15 Rated power [W] 25 <100 Suction time [ms] <60 Release time [ms] 1 Excitation current [A] <16.8 Suction voltage [V] Release voltage [V] >1.5 Excitation voltage [V] DC24±10%

#### Torque feature (T – N curve)

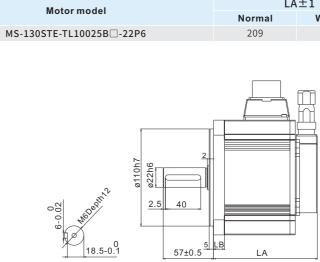


(Unit: mm)


## MS series 2.6kW


#### Motor parameter

| Voltage level                   |                     | AC 220V                                   |
|---------------------------------|---------------------|-------------------------------------------|
| Motor model                     |                     | MS-130STE                                 |
|                                 |                     | TL10025B                                  |
|                                 |                     | 22P6                                      |
| Motor code                      |                     | 9045                                      |
| Rated power [kv                 | v]                  | 2.6                                       |
| Rated speed [rp                 | m]                  | 2500                                      |
| Max speed [rpm                  | ]                   | 3000                                      |
| Rated torque [rp                | om]                 | 10                                        |
| Max torque [rpm                 | 1]                  | 25                                        |
| Rated current [mA]              |                     | 10000                                     |
| Rotor inertia[10^-7kg·m2]       |                     | 19400                                     |
| Inertia type                    |                     | /                                         |
| Recommended rotor inertia ratio |                     | Within 15 times                           |
| Polar logarithm                 |                     | 4                                         |
| Encoder bit                     |                     | 23                                        |
| Encoder type                    |                     | optical                                   |
| Motor insulation class          |                     | ClassF(155°C)                             |
| Protection level                |                     | IP65                                      |
| Using                           | Ambient temperature | -15°C~+40°C                               |
| environment                     | Ambient humidity    | Relative humidity < 90% (no condensation) |
|                                 |                     |                                           |


#### **Dimension diagram**

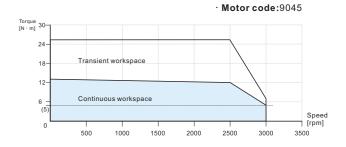
| Motor model                    | LA±1   |            | LB   | Inertia level  |
|--------------------------------|--------|------------|------|----------------|
| Motor model                    | Normal | With brake | LD   | mertialever    |
| MS5G-130STE-C□14615B□-42P3-S01 | 180.5  | 210.5      | 12.5 | Medium inertia |
| MS5G-130STE-TL14615B□-42P3-S01 | 197.5  | 227.5      | 12.5 | Wediummentia   |



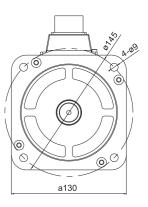


#### **Dimension diagram**




#### Motor parameter and dimension

#### Brake specification


It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| Static friction torque [N $\cdot$ m] | ≥15      |
|--------------------------------------|----------|
| Rated power [W]                      | 25       |
| Suction time [ms]                    | <100     |
| Release time [ms]                    | <60      |
| Excitation current [A]               | 1        |
| Suction voltage [V]                  | <16.8    |
| Release voltage [V]                  | >1.5     |
| Excitation voltage [V]               | DC24±10% |

#### Torque feature (T – N curve)

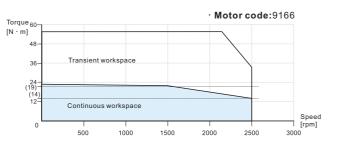


| LA±1  |            | LB | Inertia level |  |
|-------|------------|----|---------------|--|
| ormal | With brake | LD | mertid level  |  |
| 209   | 290        | 14 | /             |  |



## MS5 series 2.9kW

#### Motor parameter


| Voltage level             |                     | AC 380V                                   |  |
|---------------------------|---------------------|-------------------------------------------|--|
| Motor model               |                     | MS5G-180STE                               |  |
|                           |                     | TL19015B                                  |  |
|                           |                     | 42P9-S01                                  |  |
| Motor code                |                     | 9166                                      |  |
| Rated power [kv           | v]                  | 2.9                                       |  |
| Rated speed [rp           | m]                  | 1500                                      |  |
| Max speed [rpm            | ]                   | 2500                                      |  |
| Rated torque [rp          | om]                 | 19                                        |  |
| Max torque [rpm           | 1]                  | 51.3                                      |  |
| Rated current [mA]        |                     | 9000                                      |  |
| Rotor inertia[10^-7kg·m2] |                     | 40443                                     |  |
| Inertia type              |                     | Medium inertia                            |  |
| Recommended               | rotor inertia ratio | Within 10 times                           |  |
| Polar logarithm           |                     | 5                                         |  |
| Encoder bit               |                     | 23                                        |  |
| Encoder type              |                     | Optical                                   |  |
| Motor insulation class    |                     | ClassF(155°C)                             |  |
| Protection level          |                     | IP65                                      |  |
| Using environment         | Ambient temperature | -15°C~+40°C                               |  |
| comg chivit of mont       | Ambient humidity    | Relative humidity < 90% (no condensation) |  |

#### **Brake specification**

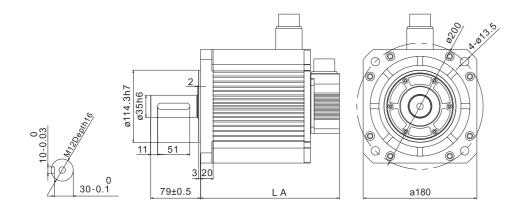
It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| ≥30      |
|----------|
| 31       |
| <110     |
| <80      |
| 1.3      |
| <18      |
| >4       |
| DC24±10% |
|          |

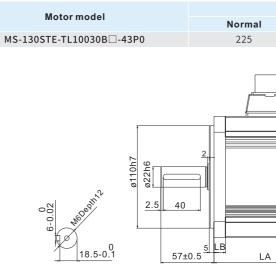
#### Torque feature (T – N curve)



(Unit: mm)


## MS series 3.0kW

#### Motor parameter

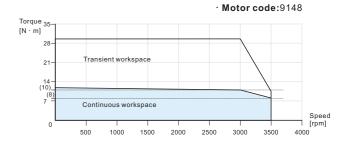

| Voltage level                   |                     | AC 380V                                   |
|---------------------------------|---------------------|-------------------------------------------|
|                                 |                     | MS-130STE                                 |
| Motor model                     |                     | TL10030B                                  |
|                                 |                     | 43P0                                      |
| Motor code                      |                     | 9148                                      |
| Rated power [kv                 | v]                  | 3                                         |
| Rated speed [rp                 | m]                  | 3000                                      |
| Max speed [rpm                  | ]                   | 3500                                      |
| Rated torque [rp                | om]                 | 10                                        |
| Max torque [rpm                 | 1]                  | 30                                        |
| Rated current [r                | nA]                 | 6400                                      |
| Rotor inertia[10^-7kg·m2]       |                     | 12723                                     |
| Inertia type                    |                     | 1                                         |
| Recommended rotor inertia ratio |                     | Within 15 times                           |
| Polar logarithm                 |                     | 5                                         |
| Encoder bit                     |                     | 23                                        |
| Encoder type                    |                     | Optical                                   |
| Motor insulation class          |                     | ClassF(155°C)                             |
| Protection level                |                     | IP65                                      |
|                                 | Ambient temperature | -15°C~+40°C                               |
| Using environment               | Ambient humidity    | Relative humidity < 90% (no condensation) |
|                                 |                     |                                           |

#### Dimension diagram

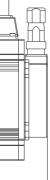
| Motor model                    | LA±1   |            | In antia laval |
|--------------------------------|--------|------------|----------------|
| Motor model                    | Normal | With brake | Inertia level  |
| MS5G-180STE-TL19015B□-42P9-S01 | 221    | 303        | Medium inertia |

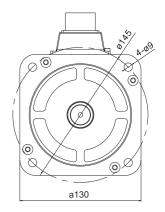


#### **Dimension diagram**




#### **Brake specification**


It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.


| Static friction torque [N $\cdot$ m] | ≥15      |
|--------------------------------------|----------|
| Rated power [W]                      | 25       |
| Suction time [ms]                    | <100     |
| Release time [ms]                    | <60      |
| Excitation current [A]               | 1        |
| Suction voltage [V]                  | <16.8    |
| Release voltage [V]                  | >1.5     |
| Excitation voltage [V]               | DC24±10% |
|                                      |          |

#### Torque feature (T – N curve)



| LA±1       | LD | Inertia level |  |
|------------|----|---------------|--|
| With brake | LB |               |  |
| 284        | 14 | /             |  |





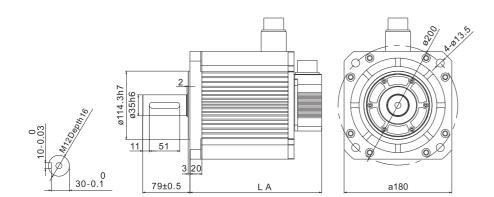
## MS5 series 4.4kW

#### Motor parameter

| Voltage level                         | AC 380V                                   |  |
|---------------------------------------|-------------------------------------------|--|
|                                       | MS5G-180STE                               |  |
| Motor model                           | TL28015B                                  |  |
|                                       | 44P4-S01                                  |  |
| Motor code                            | 9161                                      |  |
| Rated power [kw]                      | 4.4                                       |  |
| Rated speed [rpm]                     | 1500                                      |  |
| Max speed [rpm]                       | 2500                                      |  |
| Rated torque [rpm]                    | 28                                        |  |
| Max torque [rpm]                      | 56                                        |  |
| Rated current [mA]                    | 14000                                     |  |
| Rotor inertia[10^-7kg·m2]             | 55139                                     |  |
| Inertia type                          | Medium inertia                            |  |
| Recommended rotor inertia ratio       | Within 10 times                           |  |
| Polar logarithm                       | 5                                         |  |
| Encoder bit                           | 23                                        |  |
| Encoder type                          | Optical                                   |  |
| Motor insulation class                | ClassF(155°C)                             |  |
| Protection level                      | IP65                                      |  |
| Using environment Ambient temperature | -15°C~+40°C                               |  |
| Ambient humidity                      | Relative humidity < 90% (no condensation) |  |

#### **Brake specification**

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.


| J                                    | J        |
|--------------------------------------|----------|
| Static friction torque [N $\cdot$ m] | ≥30      |
| Rated power [W]                      | 31       |
| Suction time [ms]                    | <110     |
| Release time [ms]                    | <80      |
| Excitation current [A]               | 1.3      |
| Suction voltage [V]                  | <18      |
| Release voltage [V]                  | >4       |
| Excitation voltage [V]               | DC24±10% |
|                                      |          |

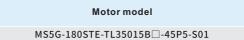
#### Torque feature (T – N curve)

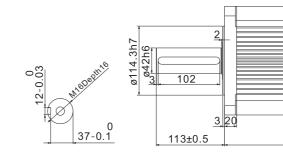
# • Motor code:9161

#### Dimension diagram

| Motor model                    | LA     | Inertia level |                |
|--------------------------------|--------|---------------|----------------|
| Motor moder                    | Normal | With brake    | mertia level   |
| MS5G-180STE-TL28015B□-44P4-S01 | 247    | 329           | Medium inertia |




## MS5 series 5.5kW

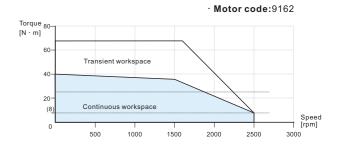

#### Motor parameter

| Voltage level                   |                     | AC380V                                    |
|---------------------------------|---------------------|-------------------------------------------|
|                                 |                     | MS5G-180STE                               |
| Motor model                     |                     | TL35015B                                  |
|                                 |                     | 45P5-S01                                  |
| Notor code                      |                     | 9162                                      |
| Rated power [kv                 | v]                  | 5.5                                       |
| Rated speed [rp                 | m]                  | 1500                                      |
| Max speed [rpm                  | 1                   | 2500                                      |
| Rated torque [rp                | om]                 | 35                                        |
| Max torque [rpm]                |                     | 70                                        |
| Rated current [n                | nA]                 | 16000                                     |
| Rotor inertia[10^-7kg·m2]       |                     | 68342                                     |
| Inertia type                    |                     | Medium inertia                            |
| Recommended rotor inertia ratio |                     | Within 10 times                           |
| olar logarithm                  |                     | 5                                         |
| ncoder bit                      |                     | 23                                        |
| Encoder type                    |                     | Optical                                   |
| Motor insulation class          |                     | ClassF(155°C)                             |
| Protection level                |                     | IP65                                      |
| sing anvironment                | Ambient temperature | -15°C~+40°C                               |
| Using environment               | Ambient humidity    | Relative humidity < 90% (no condensation) |
|                                 |                     |                                           |

(Unit: mm)

## Dimension diagram






#### Brake specification

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

| •                              | •        |
|--------------------------------|----------|
| Static friction torque [N · m] | ≥50      |
| Rated power [W]                | 51       |
| Suction time [ms]              | <110     |
| Release time [ms]              | <80      |
| Excitation current [A]         | 2.1      |
| Suction voltage [V]            | <19      |
| Release voltage [V]            | >5       |
| Excitation voltage [V]         | DC24±10% |
|                                |          |

#### Torque feature (T – N curve)



| LA±1   |            | Inertia level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Normal | With brake | mertia level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 277    | 359        | Medium inertia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|        |            | 8 A 13 5<br>8 A 13 |  |
| LA ,   | a100       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

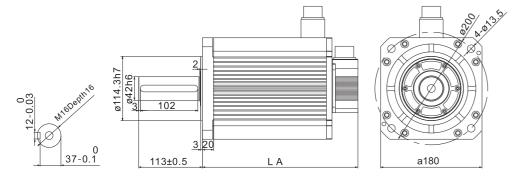
## MS5 series 7.5kW

#### Motor parameter

| Voltage level             |                     | AC 380V                                   |  |
|---------------------------|---------------------|-------------------------------------------|--|
|                           |                     | MS5G-180STE                               |  |
| Motor model               |                     | TL48015B                                  |  |
|                           |                     | 47P5-S01                                  |  |
| Motor code                |                     | 9163                                      |  |
| Rated power [kv           | v]                  | 7.5                                       |  |
| Rated speed [rp           | m]                  | 1500                                      |  |
| Max speed [rpm            | ]                   | 2000                                      |  |
| Rated torque [rpm]        |                     | 48                                        |  |
| Max torque [rpm]          |                     | 96                                        |  |
| Rated current [mA]        |                     | 16100                                     |  |
| Rotor inertia[10^-7kg·m2] |                     | 95424                                     |  |
| Inertia type              |                     | Medium inertia                            |  |
| Recommended               | rotor inertia ratio | Within 10 times                           |  |
| Polar logarithm           |                     | 5                                         |  |
| Encoder bit               |                     | 23                                        |  |
| Encoder type              |                     | Optical                                   |  |
| Motor insulation class    |                     | ClassF(155°C)                             |  |
| Protection level          |                     | IP65                                      |  |
| Helen enderer i           | Ambient temperature | -15°C~+40°C                               |  |
| Using environment         | Ambient humidity    | Relative humidity < 90% (no condensation) |  |

#### Brake specification

It is a maintain brake, the excitation will release it. It cannot be used for braking when the motor is rotating.

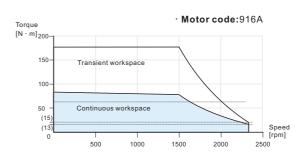

| J                              | 5        |
|--------------------------------|----------|
| Static friction torque [N · m] | ≥50      |
| Rated power [W]                | 51       |
| Suction time [ms]              | <110     |
| Release time [ms]              | <80      |
| Excitation current [A]         | 2.1      |
| Suction voltage [V]            | <19      |
| Release voltage [V]            | >5       |
| Excitation voltage [V]         | DC24±10% |
|                                |          |

#### Torque feature (T – N curve)

# · Motor code:9163

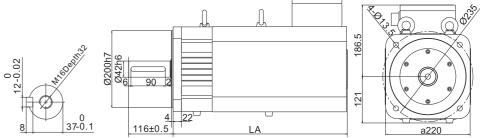
## Dimension diagram

| Motor model                    | LA     | Inertia level |                |
|--------------------------------|--------|---------------|----------------|
| Motor model                    | Normal | With brake    | inertia level  |
| MS5G-180STE-TL48015B□-47P5-S01 | 318    | 400           | Medium inertia |
|                                |        |               |                |




## MS series 11kW

#### Motor parameter


| Voltage level                   |                     | AC380V                                   |
|---------------------------------|---------------------|------------------------------------------|
|                                 |                     | MS-220STE                                |
| Motor model                     |                     | TL70015B                                 |
|                                 |                     | 411P0-XJ                                 |
| Motor code                      |                     | 916A                                     |
| Rated power [kv                 | v]                  | 11                                       |
| Rated speed [rp                 | m]                  | 1500                                     |
| Max speed [rpm                  | ]                   | 2300                                     |
| Rated torque [rp                | om]                 | 70                                       |
| Max torque [rpm]                |                     | 175                                      |
| Rated current [r                | nA]                 | 25500                                    |
| Rotor inertia[10^-7kg·m2]       |                     | 120270                                   |
| Inertia type                    |                     | 1                                        |
| Recommended rotor inertia ratio |                     | Within 10 times                          |
| Polar logarithm                 |                     | 4                                        |
| Encoder bit                     |                     | 23                                       |
| Encoder type                    |                     | Optical                                  |
| Motor insulation class          |                     | ClassF(155°C)                            |
| Protection level                |                     | IP65                                     |
|                                 | Ambient temperature | -15°C~+40°C                              |
| Using environment               | Ambient humidity    | Relative humidity < 90% (no condensation |
|                                 |                     |                                          |

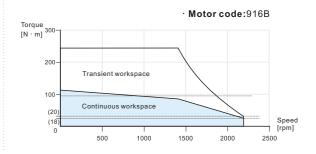
### Torque feature (T – N curve)

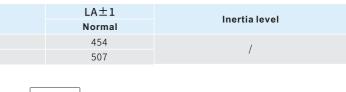


#### **Dimension diagram**






(Unit: mm)

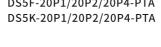

## MS series 15kW

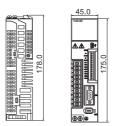
#### Motor parameter

| Voltage level             |                     | AC380V                                    |  |
|---------------------------|---------------------|-------------------------------------------|--|
|                           |                     | MS-220STE                                 |  |
| Motor model               |                     | TL96015B                                  |  |
|                           |                     | 415P0-XJ                                  |  |
| Motor code                |                     | 916B                                      |  |
| Rated power [kv           | v]                  | 15                                        |  |
| Rated speed [rp           | m]                  | 1500                                      |  |
| Max speed [rpm            | 1]                  | 2200                                      |  |
| Rated torque [rp          | om]                 | 96                                        |  |
| Max torque [rpm]          |                     | 240                                       |  |
| Rated current [r          | nA]                 | 35000                                     |  |
| Rotor inertia[10^-7kg·m2] |                     | 159500                                    |  |
| Inertia type              |                     | 1                                         |  |
| Recommended               | rotor inertia ratio | Within 10 times                           |  |
| Polar logarithm           |                     | 4                                         |  |
| Encoder bit               |                     | 23                                        |  |
| Encoder type              |                     | Optical                                   |  |
| Motor insulation class    |                     | ClassF(155°C)                             |  |
| Protection level          |                     | IP65                                      |  |
|                           | Ambient temperature | -15°C~+40°C                               |  |
| Using environment         | Ambient humidity    | Relative humidity < 90% (no condensation) |  |

#### Torque feature (T – N curve)





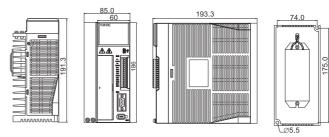


## **Driver specification**

|                  | Model                           | Pulse type                                                                                                                                                                                                                                                                                                                         | EtherCAT type                                                                                           | Xnet bus type                                                                                                                                                     | Full function type                                                               | Standard type                                                      | Integrated driving and control type                                         |
|------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|
| pecifica         | ation                           | DS5L series                                                                                                                                                                                                                                                                                                                        | DS5C series                                                                                             | DS5E series                                                                                                                                                       | DS5Fseries                                                                       | DS5K series                                                        | W5E3                                                                        |
| Powe             | errange                         | 0.1KW~2.6KW                                                                                                                                                                                                                                                                                                                        | 0.1KW~15KW                                                                                              | 0.1KW~15KW                                                                                                                                                        | 0.1~15KW                                                                         | 0.1~3.0KW                                                          | 0.75-~1.5kW                                                                 |
| Input            | t power supply                  | Single ph                                                                                                                                                                                                                                                                                                                          | ase/three phase AC200                                                                                   | 0~240V, 50Hz/60Hz; th                                                                                                                                             | ree phase 340~420V, s                                                            | 50Hz/60Hz                                                          | Single phase/three phase AC200~240V, 50Hz/60                                |
| Enco             | oder feedback                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | 17 bits/23 t                                                                                                                                                      | oits communication end                                                           | oder                                                               |                                                                             |
| Contr            | rol method                      |                                                                                                                                                                                                                                                                                                                                    | Three pha                                                                                               | ase full wave rectifier I                                                                                                                                         | PM PWM control, sine v                                                           | vave current drivin                                                | g mode                                                                      |
| Using            | Ambient temperature             |                                                                                                                                                                                                                                                                                                                                    | Operation                                                                                               | n: -10°C~40°C(no conde                                                                                                                                            | ensation)/storage: -20°                                                          | C~60°C(no conden                                                   | sation)                                                                     |
| enviro           | Ambient humidity                |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | Operation/storage                                                                                                                                                 | e: below 90% RH (no co                                                           | ndensation)                                                        |                                                                             |
| nment            | Vibration and impact resistance |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | 4                                                                                                                                                                 | .9m/s²/ 19.6m/s²                                                                 |                                                                    |                                                                             |
|                  | Electronic CAM                  |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | Without                                                                                                                                                           |                                                                                  |                                                                    | With                                                                        |
| sing environment | Protection                      | Overvoltage, undervolta<br>protection, oscillation pr                                                                                                                                                                                                                                                                              | ige, overheat, overcurrent, ove<br>otection, lack of phase protect                                      | erload, overspeed, analog inpu<br>ion                                                                                                                             | ut error, excessive position dev                                                 | iation, output short circui                                        | it, encoder error, regenerative error, overrun                              |
| -                | Dynamic brake                   |                                                                                                                                                                                                                                                                                                                                    | Without                                                                                                 |                                                                                                                                                                   |                                                                                  |                                                                    |                                                                             |
| Function         | Communication function          | <b>RS232</b> :<br>standard Modbus<br>Rtu protocol                                                                                                                                                                                                                                                                                  | RS232: standard Modbus<br>Rtu protocol<br>EtherCAT: support EtherCAT bus<br>communication (max 32-axis) | RS232: standard Modbus<br>Rtu protocol<br>RS485: standard Modbus<br>Rtu protocol<br>Support Xnet bus communicatio<br>(max 20-axis)                                | RS232: standard Modbus<br>Rtu protocol<br>RS485: standard Modbus<br>Rtu protocol | R\$232: standard Modbus<br>Rtu protocol                            | RS232: standard ModbusRtu protocol<br>RS485: standard ModbusRtu protocol    |
|                  | Brake resistor                  |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | Built in brake                                                                                                                                                    | e resistor, external brake res                                                   | sistor                                                             |                                                                             |
|                  | Display and operate             |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | 5 digits LED in                                                                                                                                                   | dicator, power indicator, 4 b                                                    | outtons                                                            |                                                                             |
| Pos              | Output status                   |                                                                                                                                                                                                                                                                                                                                    | Without                                                                                                 |                                                                                                                                                                   | ABZ differential fe                                                              | edback output                                                      | Without                                                                     |
| Position output  | Frequency division<br>function  |                                                                                                                                                                                                                                                                                                                                    | Without                                                                                                 |                                                                                                                                                                   | with                                                                             | ı                                                                  | Without                                                                     |
| utput            | Collector Z phase output        |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                   | with                                                                             |                                                                    |                                                                             |
| Ar               | nalog input                     |                                                                                                                                                                                                                                                                                                                                    | Without                                                                                                 |                                                                                                                                                                   | 2 channels input                                                                 | Without                                                            | Without                                                                     |
|                  |                                 | 750W and below: 3 ch                                                                                                                                                                                                                                                                                                               |                                                                                                         | above: 4 channels SI input                                                                                                                                        | 10 channels SI input                                                             | 5 channels SI input                                                | 750W and below: 3 channels SI input.<br>750W and above: 4 channels SI input |
| Analog input     |                                 | Servo enable, alarm clearance, forward run prohibition, reverse run prohibition, torque limit selection, internal speed selection, gear ratio switching, mode switching, pulse input prohibition, zero speed locking, position offset clearance, internal position step changing signal, internal control mode direction switching |                                                                                                         |                                                                                                                                                                   |                                                                                  |                                                                    |                                                                             |
| Dig              | gital output                    | 750W and below: 3 channels SO output.<br>750W and above: 4 channels SO output<br>Positioning completion, servo ready, alarm output, torque limit output, same speed detection, rotation de                                                                                                                                         |                                                                                                         |                                                                                                                                                                   |                                                                                  |                                                                    |                                                                             |
|                  | ax input pulse<br>quency        | Open collector: 200kpps                                                                                                                                                                                                                                                                                                            |                                                                                                         | s                                                                                                                                                                 | Open collector: 200kp<br>Differential input: 500k<br>Line reception: 2Mpps       | os <optocoupler><br/>pps <optocoupler></optocoupler></optocoupler> | Open collector: 200kpps                                                     |
| Pulse            | command mode                    | Can rece<br>CW                                                                                                                                                                                                                                                                                                                     | ive 18~24V pulse+direction, Al<br>/CCW signal (5C not support C                                         | 18-24V pulse+direction, AB phase pulse,         3.3V~5V/18-24V pulse+direction,           CW signal (5C not support CW/CCW)         AB phase pulse, CW/CCW signal |                                                                                  |                                                                    | Can receive 18~24V pulse+direction,<br>AB phase pulse, CW/CCW signal        |
| Co               | ntrol mode                      | External pulse/<br>internal position                                                                                                                                                                                                                                                                                               | External pulse/<br>internal position/<br>EtherCAT motion bus                                            | External pulse/<br>internal position/<br>XNet motion bus                                                                                                          |                                                                                  | External pulse/in                                                  | nternal position                                                            |
| Feedfor          | ward compensation               |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | 0~100                                                                                                                                                             | % (setting resolution is 1%)                                                     |                                                                    |                                                                             |
| Position         | ing completion width            |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | 0~65535 command u                                                                                                                                                 | nit (setting resolution is 1 c                                                   | ommand unit)                                                       |                                                                             |
| electro          | onic gear ratio                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | 1                                                                                                                                                                 | /10000≤B/A≤10000                                                                 |                                                                    |                                                                             |
| Contro           | ol mode                         |                                                                                                                                                                                                                                                                                                                                    | Analog sp                                                                                               | peed control (only DS5F su                                                                                                                                        | pports), internal 3-segment                                                      | speed, external speed                                              | mode                                                                        |
| Commar           | nd smoothing mode               |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | Low p                                                                                                                                                             | ass filter, smoothing filter                                                     |                                                                    |                                                                             |
| Analog           | Voltage range                   |                                                                                                                                                                                                                                                                                                                                    | Without                                                                                                 |                                                                                                                                                                   | -10~+10V (resolution 12-bit)                                                     |                                                                    | Without                                                                     |
| input            | Input impedance                 |                                                                                                                                                                                                                                                                                                                                    | Without                                                                                                 |                                                                                                                                                                   | 72ΚΩ                                                                             |                                                                    | Without                                                                     |
| То               | orque limit                     |                                                                                                                                                                                                                                                                                                                                    | Internal parameter                                                                                      |                                                                                                                                                                   | External load rated changing<br>0~100% : below ±0.01% (rated speed)              |                                                                    | Internal parameter                                                          |
|                  |                                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | External load rated char                                                                                                                                          | nging 0~100% : below ±0.01                                                       | % (rated speed)                                                    |                                                                             |
| Speed            | d changing rate                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | Rated volta                                                                                                                                                       | age ±10%: 0.01% (rated spe                                                       | ed)                                                                |                                                                             |
|                  |                                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | Ambient temperatur                                                                                                                                                | re 20±25°C: below ±0.01% (r                                                      | ated speed)                                                        |                                                                             |
| Co               | ontrol mode                     |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | Analog speed contr                                                                                                                                                | ol (only DS5F supports), int                                                     | ernal torque                                                       |                                                                             |
|                  | Command<br>oothing mode         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         | Low p                                                                                                                                                             | ass filter, smoothing filter                                                     |                                                                    |                                                                             |
| Analog           | Voltago rango                   |                                                                                                                                                                                                                                                                                                                                    | Without                                                                                                 |                                                                                                                                                                   | -10~+10V (resolution 12-bit)                                                     |                                                                    | Without                                                                     |
| input            | Input impedance                 |                                                                                                                                                                                                                                                                                                                                    | Without                                                                                                 |                                                                                                                                                                   | 72ΚΩ                                                                             |                                                                    | Without                                                                     |
| S                | Speed limit                     |                                                                                                                                                                                                                                                                                                                                    | Internal paramete                                                                                       | r                                                                                                                                                                 | Internal parameter/                                                              |                                                                    | Internal parameter                                                          |
|                  | control axis                    | Without                                                                                                                                                                                                                                                                                                                            | 32 axes                                                                                                 | 20 axes                                                                                                                                                           | external analog value Without                                                    |                                                                    |                                                                             |
|                  | ommunication                    |                                                                                                                                                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                   |                                                                                  |                                                                    |                                                                             |
| Co               | protocol                        | Without                                                                                                                                                                                                                                                                                                                            | EtherCAT protocol                                                                                       | XNET protocol                                                                                                                                                     |                                                                                  | With                                                               | out                                                                         |

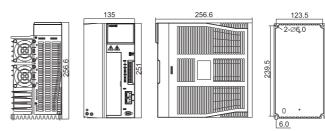
## Servo driver dimension

DS5E-20P1/20P2/20P4-PTA DS5F-20P1/20P2/20P4-PTA DS5L-20P1/20P2/20P4-PTA DS5C-20P1/20P2/20P4-PTA





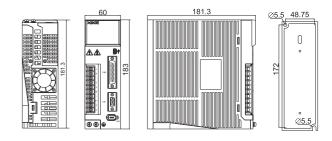

175.1




<u>33.8</u> Ø5.5

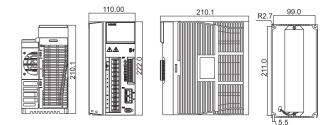
DS5E-21P5/22P3/22P6-PTA DS5F-21P5/22P3/22P6-PTA DS5L-21P5/22P3/22P6-PTA DS5K-21P5/22P3/22P6-PTA DS5C-21P5/22P3/22P6-PTA DS5C-41P5-PTA W5E3-21P5-PTA



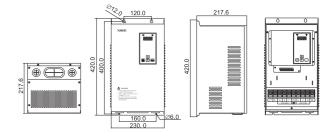

DS5E-45P5/47P5-PTA DS5F-45P5/47P5-PTA DS5**C**-45P5/47P5-PTA



(Unit: mm)

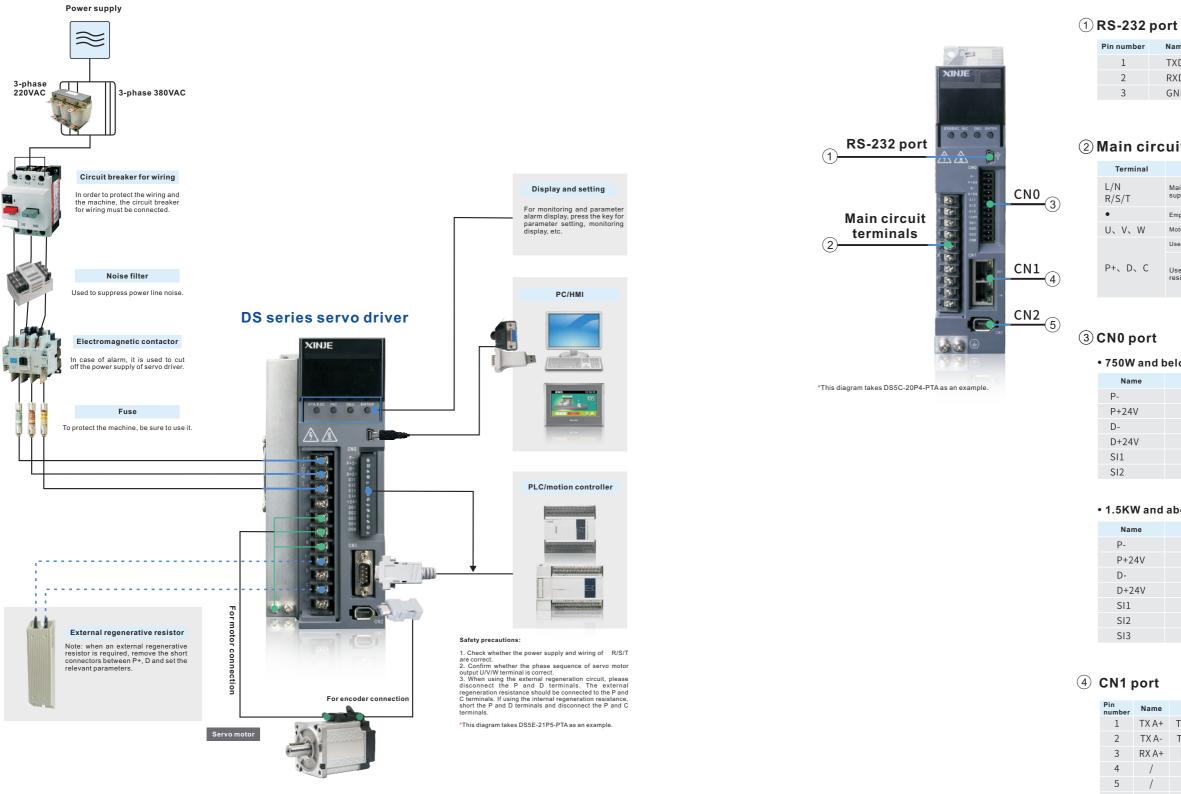

DS5E-20P7-PTA DS5L-20P7-PTA

DS5C-20P7-PTA DS5K-20P7-PTA DS5F-20P7-PTA




DS5K-43P0-PTA

DS5E-43P0-PTA DS5C-43P0-PTA DS5F-43P0-PTA




DS5E-411P0/415P0-PTA



## DS5E, DS5L series

## **DS5C** series



6 7 8

#### Driver port pin definition

| ber | Name | Explanation   |
|-----|------|---------------|
|     | TXD  | RS232 send    |
|     | RXD  | RS232 receive |
|     | GND  | RS232 ground  |
|     |      |               |

#### ② Main circuit terminals

| minal | Function                                    | Explanation                                                                                                                              |
|-------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|       | Main circuit power<br>supply input terminal | single/three phase AC220~240V, 50/60Hz<br>Three phase AC340~420V, 50/60Hz                                                                |
|       | Empty terminal                              | /                                                                                                                                        |
| W     | Motor connection terminal                   | Connect to the motor<br>Note: the ground wire is on the radiator, please check before power on                                           |
|       | Use internal regenerative resistor          | Short connect P+ and D terminals,<br>disconnect P+ and C terminals                                                                       |
| )、C   | Use external regenerative resistor          | Connect the regeneration resistance to the P + and C terminals,<br>and remove the P + and D short wires<br>P0-25=power, P0-26=resistance |

#### • 750W and below power

| ime | Explanation          | Name | Explanation            |
|-----|----------------------|------|------------------------|
|     | Pulse input PUL-     | SI3  | Input terminal 3       |
| 4V  | Open collector input | +24V | Input +24V             |
|     | Direction input DIR- | SO1  | Output terminal 1      |
| 4V  | Open collector input | SO2  | Output terminal 2      |
|     | Input terminal 1     | SO3  | Output terminal 3      |
|     | Input terminal 2     | СОМ  | Output terminal ground |

#### • 1.5KW and above power

| me  | Explanation          | Name | Explanation            |
|-----|----------------------|------|------------------------|
|     | Pulse input PUL-     | SI4  | Input terminal 4       |
| 24V | Open collector input | +24V | Input +24V             |
|     | Direction input DIR- | SO1  | Output terminal 1      |
| 24V | Open collector input | SO2  | Output terminal 2      |
|     | Input terminal 1     | SO3  | Output terminal 3      |
| 1   | Input terminal 2     | SO4  | Output terminal 4      |
| ;   | Input terminal 3     | СОМ  | Output terminal ground |
|     |                      |      |                        |

| Name  | Explanation | Pin<br>number | Name  | Explanation |
|-------|-------------|---------------|-------|-------------|
| TX A+ | TRANSMIT A+ | 9             | TX B+ | TRANSMIT B+ |
| TX A- | TRANSMIT A- | 10            | TX B- | TRANSMIT B- |
| RX A+ | RECEIVE A+  | 11            | RX B+ | RECEIVE B+  |
| /     | /           | 12            | /     | /           |
| /     | /           | 13            | /     | /           |
| RX A- | RECEIVE A-  | 14            | RX B- | RECEIVE B-  |
| /     | /           | 15            | /     | /           |
| /     | /           | 16            | /     | /           |

#### 5 CN2 port

| Pin<br>number | Name |
|---------------|------|
| 1             | 5V   |
| 2             | GND  |
| 3             | /    |
| 4             | /    |
| 5             | 485+ |
| 6             | 485- |
|               |      |

## **DS5E series**

# **RS-232 port** Main circuit 2 CN1 -(4) CN2

#### 1 RS-232 port

| Pin number | Name | Explanation   |
|------------|------|---------------|
| 1          | TXD  | RS232 send    |
| 2          | RXD  | RS232 receive |
| 3          | GND  | RS232 ground  |

#### ② Main circuit terminals

| Terminal | Function                                    | Explanation                                                                                                                              |
|----------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| L/N      | Main circuit power<br>supply input terminal | single/three phase AC220~240V, 50/60Hz                                                                                                   |
| R/S/T    |                                             | Three phase AC340~420V, 50/60Hz                                                                                                          |
| •        | Empty terminal                              | 1                                                                                                                                        |
| U、V、W    | Motor connection terminal                   | Connect to the motor<br>Note: the ground wire is on the radiator, please check before power on                                           |
|          | Use internal regenerative resistor          | Short connect P+ and D terminals,<br>disconnect P+ and C terminals                                                                       |
| P+、D、C   | Use external regenerative resistor          | Connect the regeneration resistance to the P + and C terminals,<br>and remove the P + and D short wires<br>P0-25=power, P0-26=resistance |

#### **3 CN0 port**

#### • 750W and below power

| Name  | Explanation            | Name | Explanation            |
|-------|------------------------|------|------------------------|
| P-    | Pulse input PUL-       | SI3  | Input terminal 3       |
| P+24V | Open collector input   | +24V | Input +24V             |
| D-    | Direction input DIR-   | SO1  | Output terminal 1      |
| D+24∖ | / Open collector input | SO2  | Output terminal 2      |
| SI1   | Input terminal 1       | SO3  | Output terminal 3      |
| SI2   | Input terminal 2       | COM  | Output terminal ground |

#### • 1.5KW and above power

| Name  | Explanation          | Name | Explanation            |
|-------|----------------------|------|------------------------|
| P-    | Pulse input PUL-     | SI4  | Input terminal 4       |
| P+24V | Open collector input | +24V | Input +24V             |
| D-    | Direction input DIR- | S01  | Output terminal 1      |
| D+24V | Open collector input | SO2  | Output terminal 2      |
| SI1   | Input terminal 1     | SO3  | Output terminal 3      |
| SI2   | Input terminal 2     | S04  | Output terminal 4      |
| SI3   | Input terminal 3     | COM  | Output terminal ground |

#### ④ CN1 port

| CN1           | CN1 port |             |  | CN2 p         | oort |
|---------------|----------|-------------|--|---------------|------|
| Pin<br>number | Name     | Explanation |  | Pin<br>number | Name |
| 1             | GND      | GND-485     |  | 1             | 5V   |
| 2             | A1       | RS485 +     |  | 2             | GND  |
| 3             | B1       | RS485 –     |  | 3             | /    |
| 4             | A2       | RS485 +     |  | 4             | /    |
| 5             | B2       | RS485 –     |  | 5             | 485+ |
| 6             | GND      | GND-485     |  | 6             | 485- |
| 7             |          |             |  |               |      |
| 8             | NC       | Reserved    |  |               |      |
| 9             |          |             |  |               |      |

## **DS5L** series

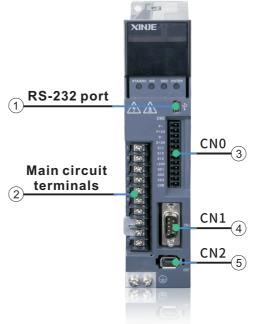
## ① **RS-232** port



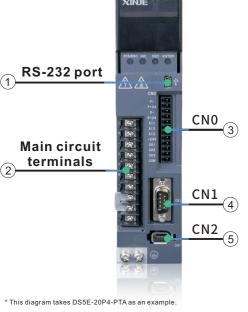
Term L/N R/S/T •

U、V、W

P+、D、


## 3 CN0 port

#### Name P-P+24 D-D+24 SI1


Name P-P+24 D-D+24 SI1 SI2 SI3

#### ④ CN1 port

| Pin<br>number |
|---------------|
| 1             |
| 2             |
| 3             |
| 4             |
| 5             |
| 6             |
| 7             |
| 8             |
| 9             |



\* This diagram takes DS5L-20P4-PTA as an example.



#### Driver port pin definition

| ber | Name | Explanation   |
|-----|------|---------------|
|     | TXD  | RS232 send    |
|     | RXD  | RS232 receive |
|     | GND  | RS232 ground  |
|     |      |               |

#### ② Main circuit terminals

| inal | Function                           | Explanation                                                                                                                        |
|------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|      | Main circuit power                 | single/three phase AC220~240V, 50/60Hz                                                                                             |
|      | supply input terminal              | Three phase AC340~420V, 50/60Hz                                                                                                    |
|      | Empty terminal                     | /                                                                                                                                  |
| V    | Motor connection terminal          | Connect to the motor<br>Note: the ground wire is on the radiator, please check before power on                                     |
|      | Use internal regenerative resistor | Short connect P+ and D terminals,<br>disconnect P+ and C terminals                                                                 |
| С    | Use external regenerative resistor | Connect the regeneration resistance to the P + and C terminals, and remove the P + and D short wires P0-25=power, P0-26=resistance |

#### • 750W and below power

| Name  | Explanation          | Name | Explanation            |
|-------|----------------------|------|------------------------|
| P-    | Pulse input PUL-     | SI3  | Input terminal 3       |
| P+24V | Open collector input | +24V | Input +24V             |
| D-    | Direction input DIR- | SO1  | Output terminal 1      |
| D+24V | Open collector input | SO2  | Output terminal 2      |
| SI1   | Input terminal 1     | SO3  | Output terminal 3      |
| SI2   | Input terminal 2     | СОМ  | Output terminal ground |

#### • 1.5KW and above power

| ne | Explanation          | Name | Explanation            |
|----|----------------------|------|------------------------|
|    | Pulse input PUL-     | SI4  | Input terminal 4       |
| 4V | Open collector input | +24V | Input +24V             |
|    | Direction input DIR- | SO1  | Output terminal 1      |
| 4V | Open collector input | SO2  | Output terminal 2      |
|    | Input terminal 1     | SO3  | Output terminal 3      |
|    | Input terminal 2     | SO4  | Output terminal 4      |
|    | Input terminal 3     | СОМ  | Output terminal ground |

5 CN2 port

| Name | Explanation |  | Pin<br>number | Name |
|------|-------------|--|---------------|------|
|      |             |  | 1             | 5V   |
|      |             |  | 2             | GND  |
| NC   | Reserved    |  | 3             | /    |
|      |             |  | 4             | /    |
|      |             |  | 5             | 485+ |
|      |             |  | 6             | 485- |
|      |             |  |               |      |

## **DS5K** series

# KINJE (1) **RS-232 port** CN0 3 Main circuit 2 terminals C<u>N1</u>(4) 1 <u>CN2</u> 5

\* This diagram takes DS5K-20P4-PTA as an example.

④ CN1 port (no function)

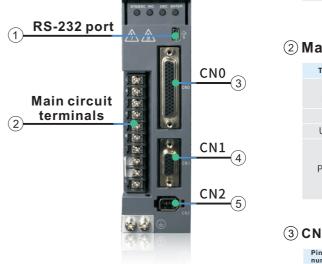
(5) CN2 port Pin number Name 1 5V 2 GND 3 / 4 / 5 485+

6 485-

1 RS-232 port

| Pin number | Name | Explanation   |
|------------|------|---------------|
| 1          | TXD  | RS232 send    |
| 2          | RXD  | RS232 receive |
| 3          | GND  | RS232 ground  |

#### ② Main circuit terminals


| Terminal     | Function                                    | Explanation                                                                                                                              |
|--------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| L/N<br>R/S/T | Main circuit power<br>supply input terminal | single/three phase AC220~240V, 50/60Hz<br>Three phase AC340~420V, 50/60Hz                                                                |
| •            | Empty terminal                              | /                                                                                                                                        |
| U、V、W        | Motor connection terminal                   | Connect to the motor<br>Note: the ground wire is on the radiator, please check before power on                                           |
|              | Use internal regenerative resistor          | Short connect P+ and D terminals,<br>disconnect P+ and C terminals                                                                       |
| P+、D、C       | Use external regenerative resistor          | Connect the regeneration resistance to the P + and C terminals,<br>and remove the P + and D short wires<br>P0-25=power, P0-26=resistance |

#### 3 CN0 port

| Pin<br>number | Name | Explanation            | Name | Pin<br>number | Explanation                                 |
|---------------|------|------------------------|------|---------------|---------------------------------------------|
| 1             | P-   | Pulse -                | 23   | SI4           |                                             |
| 2             | P+5  | Pulse +5V              | 24   | SI5           |                                             |
| 3             | P+24 | Pulse +24V             | 25   | SI6           | Input terminal                              |
| 4             | D-   | Direction -            | 26   | SI7           | input torminar                              |
| 5             | D+5  | Direction +5           | 27   | S18           |                                             |
| 6             | D+24 | Direction +24V         | 28   | S19           |                                             |
| 7             | SO1  |                        | 29   | SI10          | High speed input terminal                   |
| 8             | SO2  | Output terminal        | 30   | +24V          | Input common terminal                       |
| 9             | SO3  | output torminar        | 31   | T-REF+        | External torque analog differential input + |
| 10            | SO4  |                        | 32   | T-REF-        | External torque analog differential input - |
| 11            |      |                        | 33   | V-REF+        | External speed analog differential input +  |
| 12            | NC   | Empty terminal         | 34   | V-REF-        | External speed analog differential input -  |
| 13            | NC   | Empty terminal         | 35   | OA+           | Encoder frequency division output OA+       |
| 14            |      |                        | 36   | OA-           | Encoder frequency division output OA-       |
| 15            | СОМ  | Output common terminal | 37   | OB+           | Encoder frequency division output OB+       |
| 16            | 485+ | Communication +        | 38   | OB-           | Encoder frequency division output OB-       |
| 17            | 485- | Communication -        | 39   | OZ+           | Encoder frequency division output OC+       |
| 18            | GND  | Communication ground   | 40   | OZ-           | Encoder frequency division output OC-       |
| 19            | NC   | Empty terminal         | 41   | HPUL+         | Line driver high speed pulse +              |
| 20            | SI1  |                        | 42   | HPUL-         | Line driver high speed pulse –              |
| 21            | SI2  | Output terminal        | 43   | HDIR+         | Line driver high speed direction +          |
| 22            | SI3  |                        | 44   | HDIR-         | Line driver high speed direction -          |

## **DS5F** series

① RS-232 port



\* This diagram takes DS5F-20P4-PTA as an example.

(2)-

#### (4) CN1 port (Hardware version v3.1.40 and later)

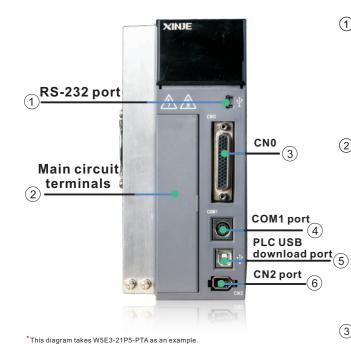
| Full closed loop input Z-<br>Full closed loop input B-<br>Full closed loop input B+<br>Full closed loop input A+<br>Full closed loop input A-<br>D Grating power supply GND |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Full closed loop input B+<br>Full closed loop input A+<br>Full closed loop input A-                                                                                         |
| Full closed loop input A+<br>Full closed loop input A-                                                                                                                      |
| Full closed loop input A-                                                                                                                                                   |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
| Grating power supply GND                                                                                                                                                    |
| D Grating power supply GND                                                                                                                                                  |
| Grating power supply 5V                                                                                                                                                     |
| Full closed loop input Z+                                                                                                                                                   |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
| Empty terminal                                                                                                                                                              |
| Empty terminal                                                                                                                                                              |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
|                                                                                                                                                                             |

#### (5) CN2 port

| Pin<br>number | Name |
|---------------|------|
| 1             | 5V   |
| 2             | GND  |
| 3             | /    |
| 4             | /    |
| 5             | 485+ |
| 6             | 485- |

#### Driver port pin definition

| number | Name | Explanation   |
|--------|------|---------------|
| 1      | TXD  | RS232 send    |
| 2      | RXD  | RS232 receive |
| 3      | GND  | RS232 ground  |
|        |      |               |


#### 2 Main circuit terminals

| Terminal     | Function                                    | Explanation                                                                                                                        |
|--------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| L/N<br>R/S/T | Main circuit power<br>supply input terminal | single/three phase AC220~240V, 50/60Hz<br>Three phase AC340~420V, 50/60Hz                                                          |
| •            | Empty terminal                              | /                                                                                                                                  |
| U.V.W        | Motor connection terminal                   | Connect to the motor<br>Note: the ground wire is on the radiator, please check before power on                                     |
|              | Use internal regenerative resistor          | Short connect P+ and D terminals,<br>disconnect P+ and C terminals                                                                 |
| P+、D、C       | Use external regenerative resistor          | Connect the regeneration resistance to the P + and C terminals, and remove the P + and D short wires P0-25=power, P0-26=resistance |

#### 3 CN0 port

| in<br>umber | Name | Explanation            | Name | Pin<br>number | Explanation                                 |
|-------------|------|------------------------|------|---------------|---------------------------------------------|
| 1           | P-   | Pulse -                | 23   | SI4           |                                             |
| 2           | P+5  | Pulse +5V              | 24   | SI5           |                                             |
| 3           | P+24 | Pulse +24V             | 25   | SI6           | Input terminal                              |
| 4           | D-   | Direction -            | 26   | SI7           | Input terminar                              |
| 5           | D+5  | Direction +5           | 27   | S18           |                                             |
| 6           | D+24 | Direction +24V         | 28   | S19           |                                             |
| 7           | SO1  |                        | 29   | SI10          | High speed input terminal                   |
| 8           | SO2  |                        | 30   | +24V          | Input common terminal                       |
| 9           | SO3  |                        | 31   | T-REF+        | External torque analog differential input + |
| 10          | S04  |                        | 32   | T-REF-        | External torque analog differential input - |
| 11          | SO5  | Output terminal        | 33   | V-REF+        | External speed analog differential input +  |
| 12          | SO6  |                        | 34   | V-REF-        | External speed analog differential input -  |
| 13          | S07  |                        | 35   | OA+           | Encoder frequency division output OA+       |
| 14          | S08  |                        | 36   | OA-           | Encoder frequency division output OA-       |
| 15          | СОМ  | Output common terminal | 37   | OB+           | Encoder frequency division output OB+       |
| 16          | 485+ | Communication +        | 38   | OB-           | Encoder frequency division output OB-       |
| 17          | 485- | Communication -        | 39   | OZ+           | Encoder frequency division output OC+       |
| 18          | GND  | Communication ground   | 40   | OZ-           | Encoder frequency division output OC-       |
| 19          | GND  | Analog input ground    | 41   | HPUL+         | Line driver high speed pulse +              |
| 20          | SI1  |                        | 42   | HPUL-         | Line driver high speed pulse –              |
| 21          | SI2  | Output terminal        | 43   | HDIR+         | Line driver high speed direction +          |
| 22          | SI3  |                        | 44   | HDIR-         | Line driver high speed direction -          |

## W5E3 series



### (4) COM1 port

| Pin<br>number | Name | Explanation   |
|---------------|------|---------------|
| 1             | /    | Empty         |
| 3             | /    | Empty         |
| 5             | TXD  | RS232 send    |
| 7             | /    | Empty         |
| 2             | /    | Empty         |
| 4             | RXD  | RS232 receive |
| 6             | /    | Empty         |
| 8             | GND  | RS232 ground  |

#### **5** PLC USB donwload port

#### 6 CN2 port

| Number | Definition |
|--------|------------|
| 1      | 5V         |
| 2      | GND        |
| 3      | /          |
| 4      | /          |
| 5      | А          |
| 6      | В          |
|        |            |

#### **1 RS-232 port**

| Pin number | Name | Explanation   |
|------------|------|---------------|
| 1          | TXD  | RS232 send    |
| 2          | RXD  | RS232 receive |
| 3          | GND  | RS232 ground  |
|            |      |               |

#### 2 Main circuit terminals

| Terminal | Function                           | Explanation                                                                                                                          |
|----------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| L/N      | Main circuit power                 | single/three phase AC220~240V, 50/60Hz                                                                                               |
| R/S/T    | supply input terminal              | Three phase AC340~420V, 50/60Hz                                                                                                      |
| •        | Empty terminal                     | /                                                                                                                                    |
| U、V、W    | Motor connection terminal          | Connect to the motor<br>Note: the ground wire is on the radiator, please check before power                                          |
|          | Use internal regenerative resistor | Short connect P+ and D terminals,<br>disconnect P+ and C terminals                                                                   |
| P+、D、C   | Use external regenerative resistor | Connect the regeneration resistance to the P + and C termin<br>and remove the P + and D short wires<br>P0-25=power, P0-26=resistance |

#### **3 CN0 port**

| Pin<br>number | Name | Explanation                   | Name | Pin<br>number | Explanation                  |
|---------------|------|-------------------------------|------|---------------|------------------------------|
| 1             | SI1  | Servo input terminal 1        | 23   | X5            | PLC input terminal X5        |
| 2             | SI3  | Servo input terminal 3        | 24   | Х7            | PLC input terminal X7        |
| 3             | +24V | Servo input +24V              | 25   | /             | Empty                        |
| 4             | S01  | Servo output terminal 1       | 26   | Y4            | PLC output terminal Y4       |
| 5             | СОМ  | SO1 common terminal COM       | 27   | Y5            | PLC output terminal Y5       |
| 6             | SO3  | Servo output terminal 3       | 28   | Y6            | PLC output terminal Y6       |
| 7             | СОМ  | SO3 common terminal COM       | 29   | Υ7            | PLC output terminal Y7       |
| 8             | Х6   | PLC input terminal X6         | 30   | СОМ           | Common terminal COM of       |
| 9             | +24V | PLC input common power supply | 50   | COM           | PLC output Y4/Y5/Y6/Y7       |
| 10            | Y1   | PLC output terminal Y1        | 31   | /             | Empty                        |
| 11            | Y3   | PLC output terminal Y3        | 32   | /             | Empty                        |
| 12            | А    | PLC485+                       | 33   | /             | Empty                        |
| 13            | В    | PLC485-                       | 34   | X0            | PLC high speed count X0      |
| 14            | GND  | PLC485GND                     | 35   | X1            | PLC high speed count X1      |
| 15            | CO14 | PLC output terminal Y1        | 36   | X2            | PLC input terminal X2        |
| 15            | СОМ  | COM terminal with Y3          | 37   | Х3            | PLC input terminal X3        |
| 16            | SI2  | Servo input terminal 2        | 38   | Х4            | PLC input terminal X4        |
| 17            | SI4  | Servo input terminal 4        | 39   | A+            | Frequency division output A+ |
| 18            | /    | Empty                         | 40   | A-            | Frequency division output A- |
| 19            | S02  | Servo output terminal 2       | 41   | B+            | Frequency division output B+ |
| 20            | СОМ  | SO2 common terminal COM       | 42   | B-            | Frequency division output B- |
| 21            | S04  | Servo output terminal 4       | 43   | Z+            | Frequency division output Z+ |
| 22            | СОМ  | SO4 common terminal COM       | 44   | Z-            | Frequency division output Z- |

## **Product accessories**

#### **Quick connector**

- $\cdot$  Provide convenient wiring terminals
- · For 100W~15KW driver
- · Suitable for DS5F, DS5K, W5E3 series 44-bit terminals: DTHDB44M-BK10



## **JC-CA** bus cable

· Special communication cable for EtherCAT motion bus · Use CAT5e industrial level 4-core cable

#### **Power cable**

· Standard cable length: 2/3/5/8/10/12/16/20 meter

· The length can be customized

· The cable connector is optional (not include cable)



#### **Regenerative resistor**

· Release the regeneration voltage of bus capacitance · Please refer to the regeneration resistance selection table in the user manual for specific model



#### **DB9** cable

- · The cable length is 1.5m
- · Connect PC to perform servo upper computer control



#### **Absolute value** battery box

· Battery box model: CP-B-BATT · The battery cannot be charged

#### **X-NET parts**

- · Bus module: JA-NE-L
- · Suitable shielded twisted-pair cable: JC-EA-length



#### Encoder cable

- · Standard cable length: 2/3/5/8/10/12/16/20 meter
- · The length can be customized
- The cable connector is optional (not include cable)





#### **Differential module**

- · Conversion between collector signal and differential signal
- · Differential to differential isolation card: JS-ID-AB
- · Differential to collector card: JS-IDC-AB(AB phase), JS-IDC-ABZ(ABZ phase)





# Model configuration list

| Motor model                                                                                                                                                                                                              | Adapted driver                         | Encoder cable                                                                    | Power cable                                              | Brake cable             | Cable parts                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------|----------------------------------------|
| MS5S-40ST -CS00330B-20P1-S01                                                                                                                                                                                             |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS5S-40ST -CM00330B-20P1-S01                                                                                                                                                                                             |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS5S-40ST -CS00330BZ-20P1-S01                                                                                                                                                                                            | DS5E/L/C/F/K-20P1-PTA                  | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5S-40ST -CM00330BZ-20P1-S01                                                                                                                                                                                            |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5S-60ST -CS00630B-20P2-S01                                                                                                                                                                                             |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | /                       | JAM-P9-P4                              |
| MS5S-60ST - CM00630B-20P2-S01                                                                                                                                                                                            |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | ,                       | JAM-P9-P4                              |
| MS5S-60ST                                                                                                                                                                                                                |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5S-60ST                                                                                                                                                                                                                | DS5E/L/C/F/K-20P2-PTA                  | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS53-60STCM00630B2-20P2-301<br>MS5H-60ST                                                                                                                                                                                 |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(I)-F03-leligui       | JAM-P9-P4                              |
| MS5H-60ST                                                                                                                                                                                                                |                                        |                                                                                  |                                                          | 1                       | JAM-P9-P4                              |
|                                                                                                                                                                                                                          |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       |                         |                                        |
| MS5H-60ST -CS00630BZ-20P2-S01                                                                                                                                                                                            |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5H-60ST - CM00630BZ-20P2-S01                                                                                                                                                                                           |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5S-60ST -CS01330B-20P4-S01                                                                                                                                                                                             |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS5S-60ST - CM01330B-20P4-S01                                                                                                                                                                                            |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS5S-60ST□-CS01330BZ-20P4-S01                                                                                                                                                                                            |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5S-60ST - CM01330BZ-20P4-S01                                                                                                                                                                                           |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5H-60ST - CS01330B-20P4-S01                                                                                                                                                                                            |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS5H-60ST - CM01330B-20P4-S01                                                                                                                                                                                            |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS5H-60ST - CS01330BZ-20P4-S01                                                                                                                                                                                           |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5H-60ST - CM01330BZ-20P4-S01                                                                                                                                                                                           | DS5E/L/C/F/K-20P4-PTA                  | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS-60ST□-T01330B□-20P4-D01                                                                                                                                                                                               |                                        | CP(T)-SP-B-length                                                                | CM(T)-P07-length                                         | 1                       | JAM-P9-P4                              |
| MS6S-60CS30B1-20P4 <sup>敬请期待</sup>                                                                                                                                                                                       |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS6S-60CM30B1-20P4 <sup>敬请期待</sup>                                                                                                                                                                                       |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS6S-60CS30BZ1-20P4 <sup>敬请期待</sup>                                                                                                                                                                                      |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS6S-60CM30BZ1-20P4 <sup>啦请期待</sup>                                                                                                                                                                                      |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS6H-60CS30B1-20P4 <sup>NEW</sup>                                                                                                                                                                                        |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS6H-60CM30B1-20P4                                                                                                                                                                                                       |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS6H-60CS30BZ1-20P4                                                                                                                                                                                                      |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS6H-60CM30BZ1-20P4                                                                                                                                                                                                      |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5S-80ST -CS02430B-20P7-S01                                                                                                                                                                                             |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS5S-80ST - CM02430B-20P7-S01                                                                                                                                                                                            |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS5S-80ST                                                                                                                                                                                                                |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5S-80ST -CM02430BZ-20P7-S01                                                                                                                                                                                            |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS5H-80ST                                                                                                                                                                                                                |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | /                       | JAM-P9-P4                              |
| AS5H-80ST -CM02430B-20P7-S01                                                                                                                                                                                             |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS5H-80ST                                                                                                                                                                                                                |                                        |                                                                                  |                                                          |                         | JAM-P9-P4-P2                           |
|                                                                                                                                                                                                                          |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        |                                        |
| MS5H-80ST -CM02430BZ-20P7-S01                                                                                                                                                                                            |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS-80ST -T02430B -20P7                                                                                                                                                                                                   |                                        | CP(T)-SP-B-length                                                                | CM(T)-P07-length                                         | 1                       | JAM-P9-P4                              |
| MS-80ST -T03520B -20P7                                                                                                                                                                                                   |                                        | CP(T)-SP-B-length                                                                | CM(T)-P07-length                                         | 1                       | JAM-P9-P4                              |
| MS5G-130STE-CS05415B-20P8-S01                                                                                                                                                                                            |                                        | CP(T)-SP-M-length                                                                | CM(T)-L15A-length                                        | 1                       | JAM-C10-L7                             |
| MS5G-130STE-CM05415B-20P8-S01                                                                                                                                                                                            |                                        | CP(T)-SP-B-length                                                                | CM(T)-L15A-length                                        | 1                       | JAM-C10-L7                             |
| MS5G-130STE-CS05415BZ-20P8-S01                                                                                                                                                                                           |                                        | CP(T)-SP-M-length                                                                | CMB(T)-L15A-length                                       | 1                       | JAM-C10-L7                             |
| MS5G-130STE-CM05415BZ-20P8-S01                                                                                                                                                                                           |                                        | CP(T)-SP-B-length                                                                | CMB(T)-L15A-length                                       | 1                       | JAM-C10-L7                             |
| MS5G-130STE-TL05415B-20P8-S01                                                                                                                                                                                            | DS5E/L/C/F/K-20P7-PTA                  | CP(T)-SP-B-length                                                                | CM(T)-L15A-length                                        | 1                       | JAM-C10-L7                             |
| MS5G-130STE-TL05415BZ-20P8-S01                                                                                                                                                                                           | W5E3-21P5-PTA                          | CP(T)-SP-B-length                                                                | CMB(T)-L15A-length                                       | 1                       | JAM-C10-L7                             |
| MS5S-80ST -CS03230B -21P0-S01                                                                                                                                                                                            |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       |                         |                                        |
| MS5S-80ST - CM03230B - 21P0-S01                                                                                                                                                                                          |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | with brake needs to use | without brake model: JAM-P9-P4         |
| MS5H-80ST -CS03230B -21P0-S01                                                                                                                                                                                            |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | with brake model: JAM-P9-P4-P2         |
| MS5H-80ST - CM03230B - 21P0-S01                                                                                                                                                                                          |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       |                         |                                        |
| MS6S-80CS30B1-20P7 NEW                                                                                                                                                                                                   |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS6S-80CM30B1-20P7 NEW                                                                                                                                                                                                   |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS6S-80CS30BZ1-20P7 <sup>敬请朋待</sup>                                                                                                                                                                                      |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| 1S6S-80CM30BZ1-20P7 <sup>收请期待</sup>                                                                                                                                                                                      |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| /S6H-80CS30B1-20P7 NEW                                                                                                                                                                                                   |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
|                                                                                                                                                                                                                          |                                        | CP(T)-SP-BM-length                                                               | CM(T)-P07-M-length                                       | 1                       | JAM-P9-P4                              |
| MS6H-80CM30B1-20P7 ***                                                                                                                                                                                                   |                                        | CP(T)-SP-M-length                                                                | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
|                                                                                                                                                                                                                          |                                        |                                                                                  | CM(T)-P07-M-length                                       | CB(T)-P03-length        | JAM-P9-P4-P2                           |
| MS6H-80CS30BZ1-20P7 <sup>欧请期待</sup>                                                                                                                                                                                      |                                        |                                                                                  |                                                          | =_(.). 00 longin        |                                        |
| MS6H-80CS30BZ1-20P7 <sup>愛達開待</sup><br>MS6H-80CM30BZ1-20P7 <sup>夜道開持</sup>                                                                                                                                               |                                        | CP(T)-SP-BM-length<br>CP(T)-SP-M-length                                          | CM(T)-L15-length                                         | 1                       | IAM-115-14                             |
| MS6H-80CS30BZ1-20P7 <sup>做请期待</sup><br>MS6H-80CM30BZ1-20P7 <sup>做请期待</sup><br>MS5S-110STE-CS03230B□-21P0-S01                                                                                                             |                                        | CP(T)-SP-M-length                                                                | CM(T)-L15-length                                         | 1                       | JAM-L15-L4                             |
| MS6H-80CM30B1-20P7 <sup>年100</sup><br>MS6H-80CS30BZ1-20P7 <sup>年10時時</sup><br>MS6H-80CM30BZ1-20P7 <sup>年10時時</sup><br>MS5S-110STE-CS032308□-21P0-S01<br>MS5S-110STE-CM032308□-21P0-S01<br>MS5S-110STE-TL032308□-21P0-S01 |                                        | CP(T)-SP-M-length<br>CP(T)-SP-B-length                                           | CM(T)-L15-length                                         | <br> <br>               | JAM-L15-L4                             |
| MS6H-80CS30BZ1-20P7 <sup>電波期待</sup><br>MS6H-80CM30BZ1-20P7 <sup>電波期待</sup><br>MS5S-110STE-CS03230B□-21P0-S01<br>MS5S-110STE-CM03230B□-21P0-S01<br>MS5S-110STE-TL03230B□-21P0-S01                                         | DSSE/L/C/F/K-21P5-PTA                  | CP(T)-SP-M-length<br>CP(T)-SP-B-length<br>CP(T)-SP-B-length                      | CM(T)-L15-length<br>CM(T)-L15-length                     |                         | JAM-L15-L4<br>JAM-L15-L4               |
| MS6H-80CS30BZ1-20P7 <sup>年3月時</sup><br>MS6H-80CM30BZ1-20P7 <sup>年3月時</sup><br>MS5S-110STE-CS03230B□-21P0-S01<br>MS5S-110STE-CM03230B□-21P0-S01<br>MS5S-110STE-TL03230B□-21P0-S01<br>MS-110ST□-T04030B□-21P2              | DS5E/L/C/F/K-21P5-PTA<br>W5E3-21P5-PTA | CP(T)-SP-M-length<br>CP(T)-SP-B-length<br>CP(T)-SP-B-length<br>CP(T)-SP-B-length | CM(T)-L15-length<br>CM(T)-L15-length<br>CM(T)-L15-length |                         | JAM-L15-L4<br>JAM-L15-L4<br>JAM-L15-L4 |
| MS6H-80CS30BZ1-20P7 <sup>電波期待</sup><br>MS6H-80CM30BZ1-20P7 <sup>電波期待</sup><br>MS5S-110STE-CS03230B□-21P0-S01<br>MS5S-110STE-CM03230B□-21P0-S01<br>MS5S-110STE-TL03230B□-21P0-S01                                         |                                        | CP(T)-SP-M-length<br>CP(T)-SP-B-length<br>CP(T)-SP-B-length                      | CM(T)-L15-length<br>CM(T)-L15-length                     |                         | JAM-L15-L4<br>JAM-L15-L4               |

| Motor model                    | Adapted driver           | Encoder cable     | Power cable       | Brake cable | Cable parts |
|--------------------------------|--------------------------|-------------------|-------------------|-------------|-------------|
| MS5S-110STE-TL04830B -21P5-S01 |                          | CP(T)-SL-B-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS-130ST-T06025B□-21P5         |                          | CP(T)-SL-B-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS-130ST-T10015B□-21P5         |                          | CP(T)-SL-B-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS5G-130STE-CS07220B-21P5-S01  | DS5E/L/C/F/K-21P5-PTA    | CP(T)-SC-M-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-CM07220B-21P5-S01  | W5E3-21P5-PTA            | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-CS07220BZ-21P5-S01 | W525 211 5 1 M           | CP(T)-SC-M-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130STE-CM07220BZ-21P5-S01 |                          | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130STE-TL07220B-21P5-S01  |                          | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-TL07220BZ-21P5-S01 |                          | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130STE-CS11515B-21P8-S01  |                          | CP(T)-SC-M-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-CM11515B-21P8-S01  |                          | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-CS11515BZ-21P8-S01 |                          | CP(T)-SC-M-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130STE-CM11515BZ-21P8-S01 |                          | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130STE-TL11515B-21P8-S01  |                          | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-TL11515BZ-21P8-S01 |                          | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5S-110STE-TL06030B□-21P8-S01 |                          | CP(T)-SL-B-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS5S-110STE-CS06030B□-21P8-S01 | DS5E/L/C/F/K-22P3-PTA    | CP(T)-SL-M-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS5S-110STE-CM06030B -21P8-S01 |                          | CP(T)-SL-B-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS5G-130STE-CS14615B-22P3-S01  |                          | CP(T)-SC-M-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-CM14615B-22P3-S01  |                          | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-CS14615BZ-22P3-S01 |                          | CP(T)-SC-M-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130STE-CM14615BZ-22P3-S01 | DS5E/L/C/F/K-22P3-PTA    | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130STE-TL14615B-22P3-S01  |                          | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-TL14615BZ-22P3-S01 |                          | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS-130STE-T07730B□-22P4        |                          | CP(T)-SL-B-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS-130STE-T07730B□-22P4        |                          | CP(T)-SL-B-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS-130ST-TL10025B□-22P6        | DS5E/L/C/F/K-22P6-PTA    | CP(T)-SL-B-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS5G-130STE-CS11515B-41P8-S01  |                          | CP(T)-SC-M-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-CM11515B-41P8-S01  |                          | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-CS1515BZ-41P8-S01  | DS5E/C-41P5-PTA          | CP(T)-SC-M-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130STE-CM11515BZ-41P8-S01 |                          | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130STE-TL11515B-41P8-S01  |                          | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130STE-TL11515BZ-41P8-S01 |                          | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130ST-CS14615B-42P3-S01   |                          | CP(T)-SC-M-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130ST-CM14615B-42P3-S01   |                          | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130ST-CS14615BZ-42P3-S01  |                          | CP(T)-SC-M-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130ST-CM14615BZ-42P3-S01  | DS5E/C/F/K-43P0-PTA      | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-130ST-TL14615B-42P3-S01   | 00000/0/1/10 401 0 1 1/1 | CP(T)-SC-B-length | CM(T)-L15-length  | /           | JAM-C10-L4  |
| MS5G-130ST-TL14615BZ-42P3-S01  |                          | CP(T)-SC-B-length | CMB(T)-L15-length | /           | JAM-C10-L7  |
| MS5G-180STE-TL19015B -42P9-S01 |                          | CP(T)-SL-B-length | CM(T)-XL25-length | /           | JAM-L15-XL4 |
| MS-130ST-TL10030B(Z)-43P0      |                          | CP(T)-SL-B-length | CM(T)-L15-length  | /           | JAM-L15-L4  |
| MS5G-180STE-TL28015B -44P4-S01 | DS5E/C/F-45P5-PTA        | CP(T)-SL-B-length | CM(T)-XL60-length | /           | JAM-L15-XL4 |
| MS5G-180STE-TL35015B□-45P5-S01 |                          | CP(T)-SL-B-length | CM(T)-XL60-length | /           | JAM-L15-XL4 |
| MS5G-180STE-TL48015B -47P5-S01 | DS5E/C/F-47P5-PTA        | CP(T)-SL-B-length | CM(T)-XL60-length | /           | JAM-L15-XL4 |
| MS-220STE-TL70015B -411P0-XJ   | DS5E-411P0-PTA           | CPT-ZDL-B-length  | CM(T)-D60-length  | /           | /           |
| MS-220STE-TL96015B -415P0-XJ   | DS5E-415P0-PTA           | CPT-ZDL-B-length  | CM(T)-D60-length  | /           | /           |

#### Model configuration list

#### Suffix S02 series (below 750W small aviation plug)

| Motor model                      | Adapted driver          | Encoder cable    | Power cable       |
|----------------------------------|-------------------------|------------------|-------------------|
| MS5S-40ST□-CS00330B-20P1-S02     | DS5E/L/C/F/K-20P1-PTA   | CPT-SW-M-length  | CMT-W07-M-length  |
| MS5S-40ST□-CM00330B-20P1-S02     |                         | CPT-SW-BM-length | CMT-W07-M-length  |
| MS5S-40ST□-CS00330BZ-20P1-S02    |                         | CPT-SW-M-length  | CMBT-W07-M-length |
| MS5S-40ST□-CM00330BZ-20P1-S02    |                         | CPT-SW-BM-length | CMBT-W07-M-length |
| MS5S-60ST -CS00630B-20P2-S02     |                         | CPT-SW-M-length  | CMT-W07-M-length  |
| MS5S-60ST - CM00630B-20P2-S02    |                         | CPT-SW-BM-length | CMT-W07-M-length  |
| MS5S-60ST -CS00630BZ-20P2-S02    |                         | CPT-SW-M-length  | CMBT-W07-M-length |
| MS5S-60ST - CM00630BZ-20P2-S02   | DS5E/L/C/F/K-20P2-PTA   | CPT-SW-BM-length | CMBT-W07-M-length |
| MS5H-60ST -CS00630B-20P2-S02     | 00000/0/0/1/11/201211/1 | CPT-SW-M-length  | CMT-W07-M-length  |
| MS5H-60ST - CM00630B-20P2-S02    |                         | CPT-SW-BM-length | CMT-W07-M-length  |
| MS5H-60ST□-CS0O630BZ-20P2-S02    |                         | CPT-SW-M-length  | CMBT-W07-M-length |
| MS5H-60ST□-CM0O630BZ-20P2-S02    |                         | CPT-SW-BM-length | CMBT-W07-M-length |
| MS5S-60ST - CS01330B-20P4-S02    |                         | CPT-SW-M-length  | CMT-W07-M-length  |
| MS5S-60ST□-CM01330B-20P4-S02     |                         | CPT-SW-BM-length | CMT-W07-M-length  |
| MS5S-60ST - CS01330BZ-20P4-S02   |                         | CPT-SW-M-length  | CMBT-W07-M-length |
| MS5S-60ST - CM01330BZ-20P4-S02   | DS5E/L/C/F/K-20P4-PTA   | CPT-SW-BM-length | CMBT-W07-M-length |
| MS5H-60ST -CS01330B-20P4-S02     | , , , ,                 | CPT-SW-M-length  | CMT-W07-M-length  |
| MS5H-60ST - CM01330B-20P4-S02    |                         | CPT-SW-BM-length | CMT-W07-M-length  |
| MS5H-60ST -CS01330BZ-20P4-S02    |                         | CPT-SW-M-length  | CMBT-W07-M-length |
| MS5H-60ST□-CM01330BZ-20P4-S02    |                         | CPT-SW-BM-length | CMBT-W07-M-length |
| MS5S-80ST - CS02430B-20P7-S02    |                         | CPT-SW-M-length  | CMT-W07-M-length  |
| MS5S-80ST - CM02430B-20P7-S02    |                         | CPT-SW-BM-length | CMT-W07-M-length  |
| MS5S-80ST -CS02430BZ-20P7-S02    |                         | CPT-SW-M-length  | CMBT-W07-M-length |
| MS5S-80ST - CM02430 BZ-20 P7-S02 |                         | CPT-SW-BM-length | CMBT-W07-M-length |
| MS5H-80ST -CS02430B-20P7-S02     |                         | CPT-SW-M-length  | CMT-W07-M-length  |
| MS5H-80ST - CM02430B-20P7-S02    |                         | CPT-SW-BM-length | CMT-W07-M-length  |
| MS5H-80ST -CS02430BZ-20P7-S02    |                         | CPT-SW-M-length  | CMBT-W07-M-length |
| MS5H-80ST - CM02430BZ-20P7-S02   |                         | CPT-SW-BM-length | CMBT-W07-M-length |
| MS5S-80ST -CS03230B-21P0-S02     | DS5E/L/C/F/K-20P7-PTA   | CPT-SW-M-length  | CMT-W07-M-length  |
| MS5S-80ST□-CM03230B-21P0-S02     |                         | CPT-SW-BM-length | CMT-W07-M-length  |
| MS5S-80ST -CS03230BZ-21P0-S02    |                         | CPT-SW-M-length  | CMBT-W07-M-length |
| MS5S-80ST - CM03230BZ-21P0-S02   |                         | CPT-SW-BM-length | CMBT-W07-M-length |
| MS5H-80ST - CS03230B-21P0-S02    |                         | CPT-SW-M-length  | CMT-W07-M-length  |
| MS5H-80ST - CM03230B-21P0-S02    |                         | CPT-SW-BM-length | CMT-W07-M-length  |
| MS5H-80ST - CS03230BZ-21P0-S02   |                         | CPT-SW-M-length  | CMBT-W07-M-length |
| MS5H-80ST - CM03230BZ-21P0-S02   |                         | CPT-SW-BM-length | CMBT-W07-M-length |